Принцип работы и назначение инфракрасного датчика движения. Пассивные ик-извещатели движения Инфракрасные охранные извещатели

Принцип работы и назначение инфракрасного датчика движения. Пассивные ик-извещатели движения Инфракрасные охранные извещатели

14.06.2019

Указанные охранные извещатели используются для обнаружения движения внутри охраняемого помещения, дополнительной блокировки поверхностей, проходов, открытых площадок, наружных периметров. Иначе их еще называют датчик движения . Начнем с классификации. Рассматриваемые здесь извещатели классифицируются по:

  • типу зоны обнаружения - объемная, поверхностная, линейная
  • принципу действия - инфракрасный (ИК), радиоволновый, ультразвуковой.
  • исполнению - настенный, потолочный, для наружной, внутренней установки

Любой конкретный извещатель одновременно характеризуется каждой из указанных категорий.

ИЗВЕЩАТЕЛЬ ИНФРАКРАСНЫЙ (ИК) ОБЪЕМНЫЙ, ПАССИВНЫЙ

Зона обнаружения - объемная, см. рис 1. Следует отметить, что подобная объемная зона обнаружения присуща извещателю настенного исполнения. Вверху- вид сбоку (вертикальная плоскость), внизу- вид сверху (горизонтальная плоскость).

Сигнал тревоги формируется при пересечении объектом, имеющим температуру, отличную от температуры помещения, секторов, определяющих конфигурацию, размеры зоны обнаружения. Поэтому характеристики указывают - объемный, инфракрасный (т.е. тепловой). А пассивными такие извещатели называются потому, что работают только "на прием", ничего не излучая. Соответственно - исполнение одноблочное. Вообще то любой инфракрасный объемный извещатель является пассивным.

ИЗВЕЩАТЕЛЬ ИНФРАКРАСНЫЙ (ИК) ПОВЕРХНОСТНЫЙ, ЛИНЕЙНЫЙ

Помимо объемной, охранные ИК извещатели могут иметь также поверхностную зону обнаружения "штора", линейную- "луч". Поверхностный охранный инфракрасный датчик имеет зону обнаружения, приведенную на рисунке 2 (все аналогично рис. 1). Для линейной зоны диаграммы не привожу- луч он и есть луч, что сверху, что сбоку- примерно как внизу рисунка 2.

Принцип действия поверхностных, линейных инфракрасных датчиков аналогичен ИК объемным извещателям. Кроме того, ряд линейных извещателей имеют активный принцип действия, т.е. состоят из двух охранных блоков- излучателя и приемника. Сигнал тревоги будет формироваться приемником при пересечении посторонним объектом ИК луча, формируемого излучателем.

Подводя итоги сказанному об охранных инфракрасных извещателях отметим следующие их особенности, которые можно отнести к недостаткам:

  • Охранный инфракрасный датчик критичен к жесткости несущей конструкции. Если она подвержена вибрациям может формировать ложные сигналы тревоги. Охранные инфракрасные (ИК) датчики следует устанавливать на капитальных конструкциях.
  • При нахождении в зоне обнаружения инфракрасного датчика конвекционных (тепловых) потоков или источников света переменной интенсивности также возможны самопроизвольные сработки. Устанавливая инфракрасные объемные датчики, следует учитывать расположение калориферов, окон.
  • Любые предметы, находящиеся в зоне обнаружения ИК объемного извещателя, образуют за собой (со стороны противоположной извещателю) "теневую зону", где обнаружение движущегося объекта невозможно. Как следствие, например перестановка мебели, вызовет изменение конфигурации зоны обнаружения. Выход- применение ИК объемных извещателей потолочного (по способу установки) исполнения.
  • Могут отслеживать животных, находящихся в зоне обнаружения. Но существуют объемные датчики, защищенные от этого фактора
  • Могут реагировать на попавших внутрь мелких насекомых. Выход- герметизировать все вводы в датчик, периодически проводить соответствующую санобработку помещений

Выбирая тип охранного инфракрасного извещателя следует учитывать угол раскрыва зоны обнаружения (измеряется в градусах), дальность действия инфракрасного извещателя. Обратите внимание - дальность действия инфракрасного объемного датчика указывается вдоль главной оси, по боковым осям она меньше. Еще, если планируется эксплуатировать инфракрасный извещатель в неотапливаемом помещении, выберите соответствующий рабочий температурный диапазон.

ОХРАННЫЕ РАДИОВОЛНОВЫЕ, УЛЬТРАЗВУКОВЫЕ ИЗВЕЩАТЕЛИ

Зона обнаружения - объемная, этакое сплошное объемное веретено. Принцип действия объемных радиоволновых и объемных ультразвуковых датчиков одинаков, основан на эффекте Доплера, а именно- звуковая или радиоволна, отражаясь от движущегося предмета изменяет свою частоту (или, если угодно, длину). Таким образом, эти охранные объемные извещатели тоже предназначены для обнаружения движения внутри защищаемого помещения. Хочу заметить, что все рассматриваемые здесь охранные извещатели (инфракрасные, радиоволновые, ультразвуковые, объемные, линейные), имеющие соответствующее климатическое исполнение могут устанавливаться вне помещений.

Как следует из названия- радиоволновый охранный датчик излучает и принимает радиоволны, а ультразвуковой объемный извещатель - ультразвук. В отличие от ИК охранных извещателей, эти безразличны к свету, теплу, сквознякам, но, однако, имеют свои недостатки:

  • первое, объемный радиоволновый извещатель излучает радиоволны достаточно высокой частоты (порядка 1 гГц) для которых стены, окна, двери - прозрачны. При неправильном выборе размера зоны обнаружения радиоволнового датчика объема, он будет реагировать на то, что делается за пределами охраняемого помещения. (Ультразвуковой- нет).
  • второе, (касается радиоволнового) возможные помехи другим радиоэлектронным устройствам
  • третье, при нахождении рядом нескольких объемных радиоволновых извещателей, они могут наводить взаимные помехи. Выход- использование приборов с разными частотными литерами. Но литер мало, большого количества радиоволновых извещателей рядом поставить нельзя.
  • четвертое, нахождение в одном помещении с работающими извещателями подобных типов хоть не смертельно, но не очень полезно. Выход- при постоянном нахождении рядом людей отключать питание датчиков.
  • пятое, поверхностную зону обнаружения не формируют.

© 2010-2019 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов

Инфракрасные извещатели являются одними из самых распространенных в системах охранной сигнализации. Объясняется это весьма широким спектром их применения.

Они используются:

  • для контроля внутреннего объема помещений;
  • организации охраны периметров;
  • блокировки различных строительных конструкций "на проход".

Помимо климатического исполнения (уличной и внутренней установки) они также подразделяются по принципу действия. Существует две большие группы: активные и пассивные. Кроме того, инфракрасные извещатели подразделяются по типу зоны обнаружения, а именно:

  • объемные;
  • линейные;
  • поверхностные.

Давайте рассмотрим по порядку для каких целей применяются те или иные их виды.

Пассивные инфракрасные извещатели.

Эти датчики имеют в своем составе линзу, "нарезающую" контролируемую область на отдельные сектора (рис.1). Срабатывание извещателя происходит при обнаружении температурных перепадов между этими зонами. Таким образом, мнение, что такой охранный датчик реагирует чисто на тепло ошибочно.

Если человек, находящийся в зоне обнаружения, будет стоять неподвижно извещатель не сработает. Кроме того, температура объекта, близкая к фоновой также влияет на его чувствительность в сторону уменьшения.

Тоже самое относится к случаям, когда скорость перемещения объекта ниже или выше нормируемой величины. Как правило, это значение лежит в пределах 0,3-3 метра/секунду. Для уверенного обнаружения нарушителя этого вполне достаточно.

Активные инфракрасные извещатели.

Устройства этого типа имеют в своем составе излучатель и приемник. Они могут быть выполнены отдельными блоками или совмещены в одном корпусе. В последнем случае при установке такого охранного прибора дополнительно используется элемент, отражающий ИК лучи.

Активный принцип действия характерен для линейных датчиков, которые срабатывают при пересечении инфракрасного луча. Ниже рассмотрены принципы действия и особенности применения основных типов ИК извещателей.

ОБЪЕМНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

Эти устройства являются пассивными (что это такое см.выше) и используются, в основном для контроля внутреннего объема помещений. Диаграмма направленности объемного датчика характеризуется:

  • углом раскрыва в вертикальной и горизонтальной плоскостях;
  • дальностью действия извещателя.

Обратите внимание - дальность действия указывается по центральному лепестку диаграммы, для боковых она будет меньше.

Что характерно для любого инфракрасного датчика, в том числе объемного - любое препятствие для него является непрозрачным, соответственно создает мертвые зоны. С одной стороны - это недостаток, с другой - достоинство, поскольку полностью отсутствует реакция на движущиеся предметы за пределами охраняемого помещения.

Также к недостаткам следует отнести возможность ложного срабатывание от таких факторов как:

  • конвекционные тепловые потоки, например, от систем отопления различного принципа действия;
  • засветки от движущихся источников света - чаще всего автомобильных фар через окно.

Таким образом, при монтаже объемного извещателя эти моменты игнорировать нельзя. По способу установки существует два исполнения "объемников".

Настенные объемные ИК извещатели.

Идеально подходят для офисов, квартир, частных домов. В таких помещениях мебель и другие предметы интерьера располагаются, как правило, вдоль стен, поэтому слепых зон не создают. Если учесть, что горизонтальный угол обзора таких датчиков составляет порядка 90 градусов, то, установив его в углу помещения, одним устройством можно практически полностью заблокировать небольшую комнату.

Потолочные объемные извещатели.

Для таких объектов как магазины или склады характерной особенностью является установка стеллажей или витрин по всей площади помещения. Установка потолочного датчика в таких случаях более эффективна, конечно, если указанные элементы имеют высоту ниже потолка.

В противном случае придется блокировать каждый образовавшийся отсек. Справедливости ради, нужно заметить, что такая необходимость возникает не всегда, но это уже тонкости проектирования сигнализации для каждого конкретного объекта с учетом всех его индивидуальных особенностей.

ЛИНЕЙНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

По своему принципу действия они являются активными и формируют один или несколько лучей, отслеживая их пересечение возможным нарушителем. В отличие от объемных, линейные датчики устойчивы к различного рода воздушным потокам, да и прямая засветка, в большинстве случаев, им не повредит.

Принцип работы линейного однолучевого инфракрасного излучателя поясняется рисунком 2.

Дальность действия активных линейных устройств составляет от десятков до сотен метров. Наиболее характерные варианты их применения:

  • блокировка коридоров;
  • охрана открытых и огороженных периметров территории.

Для охраны периметра используются извещатели, имеющие более одного луча (лучше если их будет не менее трех). Это достаточно очевидно, поскольку снижает вероятность проникновения под или над контрольной зоной.

При установке и настройке инфракрасных линейных извещателей требуется точная юстировка приемника и передатчика для двухблочных устройств или отражателя и комбинированного блока (для одноблочных). Дело в том, что сечение (диаметр) инфракрасного луча сравнительно невелик, поэтому даже небольшое угловое смещение передатчика или приемника приводит к его значительному линейному отклонению в точке приема.

Из сказанного также вытекает необходимость крепления всех элементов таких извещателей на жестких линейных конструкциях, полностью исключающих возможные вибрации.

Должен заметить, что хороший "линейник" - удовольствие достаточно дорогое. Если стоимость однолучевых устройств с небольшой дальностью действия еще лежит в пределах нескольких тысяч рублей, то с увеличением контролируемой дальности и количества ИК лучей цена возрастает до десятков тысяч.

Объясняется это тем, что охранные извещатели такого типа являются достаточно сложными электромеханическими устройствами, содержащими, помимо электроники, высокоточные оптические устройства.

Кстати, пассивные линейные извещатели тоже существуют, но по максимальной дальности действия они ощутимо уступают своим линейным собратьям.

УЛИЧНЫЕ ИНФРАКРАСНЫЕ ИЗВЕЩАТЕЛИ

Вполне очевидно, что извещатель охранной сигнализации уличного исполнения должен иметь соответствующее климатическое исполнение. Это касается, в первую очередь:

  • диапазона рабочих температур;
  • степени пылевлагозащиты.

По общепринятой существующей классификации класс защиты уличного извещателя должен быть не ниже IP66. По большому счету, для большинства потребителей это не принципиально - вполне достаточно указания "уличный" в описании технических параметров прибора. На температурный же диапазон внимание обратить стоит.

Большего интереса заслуживают особенности применения такого рода устройств и факторы, влияющие на надежность охраны.

По характеру зоны обнаружения инфракрасные охранные извещатели, предназначенные для наружной установки могут быть любого типа (в порядке убывания популярности):

  • линейные;
  • объемные;
  • поверхностные.

Как уже говорилось, уличные линейные извещатели применяются для охраны периметра открытых площадок. Для этих же целей могут использоваться и поверхностные датчики.

Объемные устройства служат для контроля различного рода площадей. Стоит сразу заметить, что по дальности действия они уступают линейным датчикам. Вполне естественно, что цены на уличные извещатели значительно выше, чем на устройства, предназначенные для внутренней установки.

Теперь, что касается практической стороны эксплуатации в системах охранной сигнализации инфракрасных наружных извещателей. Основными факторами, провоцирующими ложные срабатывания установленных на улице охранных датчиков являются:

  • наличие на охраняемом участке различной растительности;
  • перемещение животных и птиц;
  • природные явления в виде дождя, снега, тумана и пр.

Первый момент может показаться непринципиальным, поскольку, на первый взгляд, является статичным и может быть учтен на стадии проектирования. Не стоит, однако, забывать, что деревья, трава и кусты растут и со временем могут стать помехой для нормальной работы охранного оборудования.

Второй фактор производители стараются компенсировать применением соответствующих алгоритмов обработки сигнала и эффект от этого есть. Правда, как не крути, если объект даже с небольшими линейными размерами переместится в непосредственной близости от извещателя, то, скорее всего, будет идентифицирован как нарушитель.

Что касается последнего пункта. Здесь все зависит от изменения оптической плотности среды. Говоря простым языком, сильны дождь, крупный снег или густой туман могут сделать инфракрасный извещатель полностью неработоспособным.

Так что, при принятии решения об использовании в сигнализации уличных охранных извещателей учтите все сказанное. Таким образом вы сможете избавить себя от многих неприятных сюрпризов при эксплуатации наружной охранной системы.

* * *

© 2014 - 2019 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

ИК-датчик движения

Одно из новшеств вошедших в нашу жизнь, область его применения широка, поэтому он перестал быть «диковинкой» и начал применяться повсеместно. Естественно, люди интересуются этим прибором. Удалось найти публикацию автора, который очень подробно осветил эту тему, как говорится, не добавит, не убавить.

Представляю вашему вниманию статью из журнала «Радiоаматор» автор Н.П. Власюк , г. Киев.

Пассивный инфракрасный датчик движения

Пассивный инфракрасный датчик движения с питанием от ~220 В выпускается в комплекте с галогеновым прожектором и сконструирован как единое устройство. Пассивным называется потому, что он не подсвечивает контролируемую зону инфракрасным излучением, а использует его фоновое инфракрасное излучение, поэтому является абсолютно безвредным.

Назначение ИК-датчика и практическое применение

Датчик предназначен для автоматического включения нагрузки, например прожектора, при попадании в зону его контроля движущегося объекта и выключении его после выхода объекта из зоны. Он применяется для освещения фасадов домов, хозяйственных дворов, строительных площадок и т.д.

Технически данные пассивного ИК-датчика модели 1VY7015

Напряжение питания датчика и всего устройства ~220 В, ток потребления самого датчика в режиме охраны 0,021 А, что соответствует потребляемой мощности 4,62 Вт. Естественно, при включении галогеновой лампы мощностью 150 или 500 Вт потребляемая мощность увеличивается соответственно. Максимальный радиус обнаружения движущегося объекта (впереди датчика) 12 м, зона чувствительности в горизонтальной плоскости 120…180 0 , регулируемая задержка освещения (после выхода объекта из зоны контроля) от 5… 10 с до 10… 15 мин. Допустимый температурный диапазон эксплуатации -10…+40°С. Допустимая влажность до 93%.

ИК-датчик может находиться в одном из следующих режимов. «Режим охраны», при котором он «зорко» следит за контролируемой зоной и готов в любое время включить исполнительное реле (нагрузку). «Режим тревоги», при котором датчик с помощью исполнительного реле включил нагрузку, так как в его контролируемою зону попал движущийся объект. «Спящий режим», при котором датчик, находясь во включенном состоянии (под током), в дневное время, не реагирует на внешние раздражители, а с наступлением сумерек (темноты) автоматически переходит в «Режим охраны». Этот режим предусмотрен для того, чтобы не включать освещение в дневное время. После подачи питания датчик начинает с «Режима тревоги», а потом переходит в «Режим охраны».

Подобные датчики продаются также и отдельно. Их применяют значительно шире, чем комплект (прожектор с датчиком), а по режиму электропитания они могут быть рассчитаны на напряжение ~220 В или =12 В.

Принцип работы пассивного ИК-датчика

Фоновое инфракрасное излучение контролируемой зоны с помощью переднего стекла (линзы) фокусируется на фототранзисторе, чувствительном к ИК-лучам. Поступающее от него малое напряжение усиливается с помощью операционных усилителей (ОУ) микросхемы, входящей в схему датчика. В нормальных условиях электромеханическое реле включения нагрузки обесточено. Как только в контролируемой зоне появляется движущийся объект, освещенность фототранзистора изменяется, он выдает на вход ОУ измененное напряжение. Усиленный сигнал выводит схему из равновесия, срабатывает реле, которое включает нагрузку, например лампу освещения. Как только объект выходит из зоны, лампа некоторое время продолжает светиться, в зависимости от выставленного времени электронного реле времени, а затем переходит в исходное состояние - «Режим охраны».

Принципиальная схема пассивного ИК-датчика модели 1VY7015 показана на рис.1.

По сравнению с подобными 1 2-вольтовыми ИК-датчиками, схема этой модели является простой. Нарисована она по монтажной схеме. Так как на монтажной схеме производители не обозначили все радиоэлементы, то автору пришлось это сделать самостоятельно. На плате размерами 80×68 мм размещены навесные радиоэлементы без применения ЧИП-элементов.

Назначение основных радиоэлементов принципиальной схемы

1. Узел питания датчика - бестрансформаторный, выполнен с применением гасящего конденсатора С2 емкостью 0,33 мкФ×400 В. После выпрямительного моста стабилитрон ZD (1 N4749) устанавливает напряжение 25 В, которое используется для питания обмотки реле К1, а стабилизатор DA1 (78L08) из 25 В стабилизирует 8 В, которое используется для питания микросхемы LM324 и вообще всей схемы. Конденсатор С4 - сглаживающий, а СЗ предохраняет датчик от высокочастотных помех.

2. Трехвыводной инфракрасный фототранзистор PIR D203C - «зоркий глаз» датчика, его главный элемент, именно он выдает «команду» на включение исполнительного реле при быстром изменении инфракрасного фона контролируемой зоны. Питается от +8 В через резистор R15. Конденсатор С13 - сглаживающий, а С12 предохраняет фототранзистор от высокочастотных помех.

3. Микросхема LM324N (рыночная стоимость $0,1) - главный усилитель датчика. В своем составе имеет 4 ОУ, которые схемой датчика (радиоэлементами R7, С6; D1, D2; R21, D3) включены последовательно (4-3-2-1), что обеспечивает высокое усиление сигнала, выдаваемого ИК- фототранзистором, и высокую чувствительность всего датчика. Питается от 8 В («плюс» - вывод 4, «минус» - вывод 11).

4. Назначение электромеханического реле К1 модели LS-T73 SHD-24VDC-F-A - включать нагрузку, а точнее, выдавать на нее ~220 В. Напряжение +25 В на обмотку реле выдает транзистор VT1. Номинальное рабочее напряжение обмотки реле 24 В, а его контакты, согласно надписи на корпусе, допускают ток 10 А при ~240 В, что вызывает сомнения в способности такого малогабаритного реле коммутировать нагрузку в 2400 Вт. Заграничные производители часто завышают параметры своих радиоэлементов.

5. Транзистор VT1 типа SS9014 или 2SC511. Основные предельные параметры: Uкэ.макс=45 В, lк.макс=0,1 А. Обеспечивает включение/выключение реле К1 в зависимости от соотношений напряжений (вывод 1 LM324N и коллектор VT2) на его базе.

6. Мост (R5, R6, R7, VR2, фоторезистор CDS) транзистор VT2 (SS9014, 2SC511) предназначены для установления одного из двух режимов работы датчика: «Режима охраны» или «Спящего режима». Необходимый режим обеспечивается освещенностью фоторезистора CDS (именно он своим сопротивлением, изменяющимся С» освещенности, указывает датчику, сейчас день или ночь положением движка переменного резистора VR2 (DAY LIGHT). Так, при нахождении движка переменного резистора в положении «День», датчик работает как днем, так и ночью, а в положении «Ночь» - только ночью, а днем находится в «спящем» режиме.

7. Регулируемое электронное реле времени (С14, R22 VR1) обеспечивает задержку времени отключения светящей лампы от 5… 10 с до 10… 15 мин после выхода объекта из контролируемой зоны. Регулировка обеспечивается

переменным резистором TIME VR1.

8. Переменным резистором SENS VR3 регулируют чувствительность датчика путем изменения глубины отрицательной обратной связи в ОУ №3.

9. Демпферная цепочка R1C1 поглощает скачки напряжения, возникающие при включении/выключении галогеновой лампы.

10. Остальные радиоэлементы (например, R16-R20 R11, R12 и т.д.) обеспечивают нормальную работу ОУ микросхемы LM324N.

Приступая к ремонту ИК-датчика, следует помнить, все его радиоэлементы находятся под фазным напряжением, опасным для жизни. При ремонте подобных устройств их рекомендуют включать через разделительный трансформатор. Датчик работает надежно и в ремонт попадает редко, но если он поврежден, то ремонт начинают с внешнего осмотра его монтажной платы. Если при этом не обнаружено повреждений, то следует проверить выходные напряжения устройства питания (25 и 8В). Устройство питания, да и любой другой элемент схемы (микросхема, транзисторы, стабилизатор, конденсаторы, резисторы), могут выйти из строя из-за скачков напряжения в питающей сети или ударов молнии, а защита от них в схеме датчика, к сожалению, не предусмотрена. Тестером можно проверить исправность всех этих элементов, кроме микросхемы. Микросхему, при подозрении в ее неработоспособности, можно заменить. Слабым звеном в датчике могут оказаться контакты реле К1, так как они коммутируют значительные пусковые токи галогеновой лампы, их работоспособность проверяют тестером.

Настройка ИК-датчика заключается в правильной установке трех регулировочных резисторов, расположенных снизу датчика (рис.2 ).

Что же регулируют эти резисторы?

TIME - регулирует время задержки на выключение галогеновой лампы, после того как объект, вызвавший ее включение, вышел из контролируемой зоны. Диапазон регулировки от 5…10 с до 10…15 мин.

DAY LIGHT- устанавливает датчик в «Режим охраны» или «Спящий режим» в дневное время. С физической точки зрения положение движка переменного резистора разрешает или запрещает работать датчику при определенной освещенности. Регулируемый диапазон освещенности 30 лк. Так, если регулятор повернуть против часовой стрелки (установить на знак «полумесяц»), то датчик работает только в темное время суток, а днем «спит». Если повернуть его в крайнее положение против часовой стрелки (знак «маленькое солнышко»), то датчик работает как в дневное, так и в ночное время, т.е. круглые сутки. В промежуточном положении между этими значениями датчик может перейти в «Режим охраны» уже с наступлением сумерек. Переход датчика в один из вышеуказанных режимов происходит автоматически.

SENS - регулирует чувствительность датчика, т.е. устанавливает большую или меньшую площадь (или дальность) контролируемой зоны.

Недостатки ИК-датчика

Недостатки ИК-датчика ~220 В заключаются в его ложных срабатываниях. Это происходит при движении веток деревьев или кустов, находящихся в контролируемой зоне; от проезжающей машины, точнее, от тепла его двигателя; от изменяющегося источника тепла, если он расположен под датчиком; от внезапного изменения температуры при порывах ветра; от молнии и засветки автомобильных фар от прохода животных (собак, кошек); от мигания электросети датчик срабатывает и некоторое время лампа продолжает светить. К недостаткам вышеописанного датчика следует отнести и его нерабочее состояние при отсутствии напряжения ~220 В. Уменшить количество ложных срабатываний можно путем изменения положения датчика.

Назначения переднего стекла - линзы ИК - датчика. Для расширения контролируемой зоны до Control 120° и даже 180° линзу датчика делают полукруглой или сферической. При ее изготовлении (литье) с ее внутренней стороны предусмотрены многочисленные прямоугольные линзочки. Они делят контролируемый сектор на маленькие участки. Каждая линзочка, из своего участка, фокусирует инфракрасное излучение в центр фототранзистора. Деление контролируемой зоны на участки приводит к тому, что контролируемая зона становится веерной (рис.3 ).

В результате датчик «видит» нарушителя только в черной зоне, а в белой он «слепой». Эти зоны, в зависимости от количества и размеров линзочек, имеют заданную конструкторами конфигурацию. Применение микропроцессоров позволяет устранить ряд вышеописанных недостатков этих датчиков. Линза - это важнейший элемент ИК-датчика. Именно от ее зависит, как широко по горизонтали и вертикали «видит» датчик. Некоторые ИК-датчики имеют сменные линзы, которые создают контролируемую зону под конкретную задачу. Стекло линзы должно быть целым (не разбитым), в противном случае конфигурация его контролируемой зоны непредсказуема.

1 .Освещение различных помещений, т.е. автоматическое включение/выключение освещения в подъездах, складах, квартирах (домах), хозяйственных дворах и фермах. Для этого, в зависимости от ситуации, можно применить как вышеописанные комплекты ИК- датчиков с прожекторами, так и отдельно продаваемые датчики. Устанавливают комплект на неподвижных объектах на высоте 2,5…4,5 м (рис.4 ).


Отдельно продаваемые пассивные ИК-датчики могут быть рассчитаны на напряжение электропитания либо ~220 В, либо +12 В. Для освещения лучше использовать датчики на ~220 В, они сравнительно дешевые и выдают на нагрузку также ~220 В, поэтому к ним легко подключать электролампочки.

Один из вариантов такого датчика, модель УСА 1009, показан на рис.6 .

В нем только два регулировочных резистора: Time Delay, регулирующий время отключения нагрузки после выхода объекта из контролируемой зоны, и Light Control, разрешающий или запрещающий работу датчика в дневное время. Максимально допустимая нагрузка 1200 Вт. Угол обзора контролируемой зоны 180°, а ее максимальная длина 12 м.

Из датчика выходят три цветных провода, предназначенных для подключения сети и нагрузки. На рис.7

показана схема включения такого датчика на отдельную лампу ~220 В, в качестве которой можно использовать и настольную лампу.

При подключении датчика к существующей электропроводке дома (квартиры), т.е. к уже установленным лампочкам и выключателям важно правильно найти общий провод датчика и совместить его с электропроводкой. На рис.8, а, б показаны схемы участка электропроводки до включения датчика и после включения.

Если использовать датчик для освещения крыльца дома, то сам датчик лучше установить около лампочки.

Применение ИК-датчиков в схемах освещения значительно экономит электроэнергию и создает удобства при их автоматическом включении/выключении.

2. Автоматическое включение освещения в квартирах и домах. В такой ситуации датчик лучше приспособить к настольной лампе, чтобы при ненадобности можно было легко отключить.

3. Оповещение владельца дома о приходе гостей. В этом случае, датчик необходимо направить на калитку забора или пространство около нее, а для звукового оповещения использовать звонок или иной звуковой извещатель с питанием от ~220 В.

4. Охрана хозяйственного двора, гаража, фермы, офиса, квартиры. Для этой цели можно применить и вышеописанные дешевые ИК-датчики с питанием от ~220 В. Однако такие датчики имеют большой недостаток: при пропадании сети они не работают, поэтому их применяют только для охраны малозначимых объектов. ИК-датчики с питанием от +12 В лишены этих недостатков, так как они легко обеспечиваются резервным электропитанием от аккумуляторов. Для этого разработан небольшой приемно - контрольный прибор (ПКП), который крепится на стенку. В нем размещаются блок питания, аккумуляторы 12 В на 4 Ач или 7 Ач и электронная начинка. Все датчики охраняемого объекта подключают к одному ПКП, который обеспечивает их надежным электропитанием, принимает от них сигналы тревоги и передает охране. При отсутствии охраны к ПКП можно подключить мощную звуковую сирену, которая отпугнет злоумышленников. Таким образом, для охраны важных объектов должны применяться комплекты ПКП с ИК- датчиками 12 В, между ними протягивают стандартный 4- проводный кабель (два провода для питания 12 В, два - для сигнала тревоги). На ИК-датчиках +12 В не устанавливают внешние регулировочные резисторы, так как часть их функций передано «электронной начинке» прибора ПКП.

Для охраны своего хозяйственного двора ИК-датчики необходимо устанавливать так, чтобы они не были заметны, иначе их могут вывести из строя. Для этого ИК-датчики можно установить у окон внутри дома, направив их линзу на охраняемые объекты. Для охраны квартир и офисов ИК- датчики устанавливают в углу комнат, а для охраны гаражей и ферм их линзы направляют на входные ворота.

Как уже отмечалось, дешевые ИК-датчики на ~220 В и 12 В имеют ряд недостатков, таких, как срабатывания датчика при проходе собак, кошек, мышей. Для устранения этого явления необходимо установить ИК-датчик внутри дома на подоконнике окна, направить его во двор и расположить перед ним защитный экран (рис.9 ).

В этом случае между землей и зоной захвата ИК-датчика образуется «слепая зона», в которой датчик не реагирует на мелких нарушителей, но на проходящего человека он среагирует, так как по высоте человек выше этой зоны.

В новых датчиках 12 В конструкторы, усложнив схему и конструкцию датчика, устранили этот недостаток. Так, в израильском ИК-датчике Crow SRX-1100 добавлен микропроцессор и установлен СВЧ радиоизлучатель, который определяет размеры нарушителя, сравнивает его с установленными порогами и принимает решение, дать или не дать команду на сигнал тревоги.

Конструкторы из Японии и других стран решили данную проблему другим способом. Они предусмотрели смещение (внутри ИК-датчика) электронной платы с фототранзистором вверх или вниз по отношению к точке фокусировки линзочек стекла. В результате самые ближние к земле черные чувствительные сегменты отсекаются, и у земли устанавливается «слепая зона», в которой датчик «не видит» мелких животных. Высоту «слепой зоны» можно регулировать тем же смещением электронной платы. Есть и другие способы исключения реагирования ИК-датчиков на проход мелких животных. Решена проблема срабатывания ИК-датчика при его засветке молнией или фарами автомашин. Естественно, все эти усовершенствования вызывают удорожание пассивных ИК-датчиков, зато повышают надежность охраны.

Как обмануть ИК-детектор
Изначальный недостаток ИК-пассивного метода обнаружения движения: человек должен явно отличаться по температуре от окружающих предметов. При температуре в комнате 36,6º никакой детектор не отличит человека от стен и мебели. Хуже того: чем ближе температура в комнате к 36,6º, тем хуже чувствительность детектора. Большинство современных устройств частично компенсируют этот эффект, повышая усиление при температурах от 30º до 45º (да, детекторы успешно работают и при обратном перепаде – если в комнате +60º, детектор легко обнаружит человека, благодаря системе терморегуляции человеческий организм сохранит температуру около 37º). Так вот при температуре на улице около 36º (что часто встречается в южных странах) детекторы очень плохо открывают двери, либо, наоборот, из-за предельно поднятой чувствительности реагируют на малейшее дуновение ветра.
Более того, от ИК-детектора легко загородиться любым предметом комнатной температуры (листом картона) или надеть толстую шубу и шапку, чтобы не высовывались руки и лицо, и, если ходить достаточно медленно, ИК-детектор не заметит столь маленьких и медленных возмущений.
В интернете ходят и более экзотические рекомендации, типа мощной ИК-лампы, которая, если ее медленно включить (обычным диммером), загонит ИК-детектор в зашкал, после чего перед ним даже без шубы можно ходить. Тут, правда, следует отметить, что хорошие ИК-детекторы в таком случае выдадут сигнал неисправности.
Наконец, наиболее известная проблема ИК-детекторов – маскирование. Когда система снята с охраны, днем в рабочие часы, вы как посетитель приходите в нужное помещение (в магазин, например) и, поймав момент, пока никто не смотрит, загораживаете ИК-детектор бумажкой, заклеиваете непрозрачной самоклеющейся пленкой или заливаете краской из баллончика. Особенно это удобно человеку, который сам там работает. Кладовщик днем аккуратно загородил детектор, ночью влез в окно, все вынес, а потом убрал все и вызвал милицию – ужас, обокрали, а сигнализация не сработала.
Для защиты от такого маскирования существуют следующие технические приемы.
1. В совмещенных (ИК + микроволновый) датчиках есть возможность выдать сигнал неисправности, если микроволновый датчик обнаружил большой отраженный радиосигнал (кто-то подошел очень близко или протянул руку непосредственно к извещателю), а ИК-датчик при этом перестал выдавать сигналы. В большинстве случаев в реальной жизни это означает вовсе не злой умысел преступника, а халатность персонала – например, высокий штабель ящиков загородил извещатель. Впрочем, вне зависимости от злого умысла если извещатель загородили, это непорядок, и такой сигнал «неисправность» очень уместен.
2. В некоторых приборах приемно-контрольных есть алгоритм контроля, когда после снятия извещателя с охраны он обнаруживает движение. То есть отсутствие сигнала считается неисправностью, пока кто-то не пройдет перед датчиком и он не выдаст нормальный сигнал «есть движение». Эта функция не очень удобна, ведь нередко снимают с охраны все помещения, даже те, в которые сегодня никто входить не собирается, а получится, что вечером, чтобы поставить помещения снова на охрану, придется зайти во все комнаты, где никого днем не было, и помахать руками перед датчиками – ППК убедится, что датчики работоспособны, и милостиво разрешит поставить систему на охрану.
3. Наконец, есть функция под названием «ближняя зона», которая однажды была включена в требования отечественного ГОСТа и которую нередко ошибочно называют «антимаскинг». Суть идеи: у извещателя должен быть дополнительный датчик, глядящий прямо вниз, под извещатель, или отдельное зеркало, или специальная хитрая линза, в общем, чтобы не было мертвой зоны внизу. (Большинство извещателей имеют ограниченный угол обзора и в основном смотрят вперед и градусов 60 вниз, так что непосредственно под извещателем есть небольшая мертвая зона, на уровне пола примерно метр от стены.) Считается, что хитрый враг как-то сможет попасть в эту мертвую зону и оттуда загородить (замаскировать) линзу ИК-датчика, а потом уже нагло ходить по всей комнате. В реальности извещатель обычно устанавливают так, что в эту мертвую зону нет никакой возможности попасть, минуя области чувствительности датчика. Ну разве что сквозь стену, но против преступников, проникающих сквозь стену, не помогут дополнительные линзы.

Радиопомехи и прочие помехи
Как я уже говорил, ИК-датчик работает близко к пределу чувствительности, особенно при температуре в помещении, приближающейся к 35º С. Конечно, при этом он весьма подвержен влиянию помех. Большинство ИК-извещателей могут выдать ложную тревогу, если рядом с ними положить сотовый телефон и позвонить на него. На этапе установления связи телефон выдает мощные периодические сигналы с периодом, близким к 1 Гц (именно в этом диапазоне лежат типичные сигналы от человека, идущего перед ИК-датчиком). Несколько ватт радиоизлучения вполне сопоставимы с микроваттами теплового излучения человека.
Помимо радиоизлучения могут быть и оптические помехи, хотя линза ИК-датчика, как правило, непрозрачна в видимом диапазоне, но мощные лампы или 100 Вт автомобильные фары в соседнем спектральном диапазоне опять же вполне могут дать сигнал, сравнимый с микроваттами от человека в нужном диапазоне. Основная надежда при этом на то, что посторонние оптические помехи, как правило, плохо фокусируются и потому одинаково воздействуют на оба чувствительных элемента ИК-датчика, таким образом, извещатель может обнаружить помеху и не выдать ложный сигнал тревоги.

Пути совершенствования ИК-датчиков
Уже лет десять почти все охранные ИК-извещатели содержат достаточно мощный микропроцессор и потому стали менее подвержены воздействию случайных помех. Извещатели могут анализировать повторяемость и характерные параметры сигнала, долговременную стабильность фонового уровня сигнала, что позволило существенно повысить устойчивость к помехам.
ИК-датчики, в принципе, беззащитны против преступников за непрозрачными экранами, зато подвержены влиянию тепловых потоков от климатического оборудования и посторонней засветке (через окно). Микроволновые (радио) датчики движения, наоборот, способны выдавать ложные сигналы, обнаруживая движение за радиопрозрачными стенами, вне защищаемого помещения. Они также более подвержены влиянию радиопомех. Совмещенные ИК + микроволновые извещатели могут использоваться как по схеме «И», что значительно снижает вероятность ложных тревог, так и по схеме «ИЛИ» для особо ответственных помещений, что практически исключает возможность их преодоления.
ИК-датчики не могут отличить маленького человека от большой собаки. Существует ряд датчиков, в которых значительно снижена чувствительность к движениям небольших объектов за счет применения 4-площадочных сенсоров и специальных линз. Сигнал от высокого человека и от низкой собаки в таком случае можно с некоторой вероятностью различить. Надо хорошо понимать, что стопроцентно отличить пригнувшегося подростка от вставшего на задние лапы ротвейлера, в принципе, невозможно. Но тем не менее вероятность ложной тревоги может быть существенно снижена.
Несколько лет назад появились еще более сложные сенсоры – с 64 чувствительными площадками. Фактически это простой тепловизор с матрицей 8 х 8 элементов. Оснащенные мощным процессором, такие (обозвать их «извещатель» совсем язык не поворачивается) способны определять размер и расстояние до движущейся теплой цели, скорость и направление ее движения – еще лет 10 назад такие сенсоры считались верхом технологии для самонаводящихся ракет, а теперь применяются для защиты от банальных воров. Видимо, скоро ИК-датчиком мы привыкнем называть небольших роботов, которые разбудят вас ночью словами: «Извините, сэр, но воры, сэр, они хотят чаю. Должен ли я подать им чаю сейчас или попросить подождать, пока вы умоетесь и возьмете ваш револьвер?»

Среди большого многообразия охранных извещателей, инфракрасный датчик движения является самым распространенным устройством. Доступная цена и эффективность, вот качества, обеспечившие им популярность. А все благодаря тому, что в начале девятнадцатого века обнаружили инфракрасное излучение.

Оно находится за границей видимого красного света в диапазоне 0,74-2000 мкм. Оптические свойства веществ сильно различаются и зависят от типа облучения. Небольшой слой воды является непрозрачным для ИК излучения. Инфракрасное излучение солнца составляет 50 процентов всей излучаемой энергии.

Область применения

Инфракрасные датчики движения для охраны применяются давно. Они фиксировали перемещения теплых объектов в помещениях, и передавали сигнал тревоги на контрольную панель. Их стали совмещать с видеокамерами и фотоаппаратами. При нарушении происходила фиксация происшествия. Потом область применения расширилась. Зоологи стали применять в фотоловушках для контроля исследуемых животных.

Больше всего ИК датчики применяются в системе умный дом, где играют роль сенсора присутствия. При попадании теплокровного объекта в область действия устройства, оно включает освещение в помещении или на улице. Экономится электричество и облегчается жизнь людям.

В системах контроля доступа извещатели движения управляют открыванием и закрыванием дверей общественных сооружений. По расчетам экспертов рынок ИК сенсоров будет расти на 20% ежегодно ближайшие 3-5 лет.

Принцип работы ИК датчика движения

Работа ИК извещателя заключается в контроле инфракрасного излучения определенной области, сравнении его с фоновым уровнем, и по результатам анализа выдачи сообщения.

ИК датчики движения для охраны используют активные и пассивные виды сенсоров. Первые для контроля используют собственный передатчик, облучающие все в зоне действия устройства. Приемник получает отраженную часть ИК излучения и по его характеристикам определяет, было нарушение зоны охраны или нет. Активные датчики бывают комбинированного типа, когда принимающие и передающие блоки разделены, это извещатели контролирующие периметр объекта. Имеют большую дальность действия по сравнению с пассивными устройствами.

Пассивный инфракрасный датчик движения не имеет излучателя, он реагирует на изменение окружающего ИК излучения. В общем случае, извещатель имеет два чувствительных элемента, способных фиксировать инфракрасное излучение. Перед сенсорами устанавливается линза Френеля, разбивающая пространство на несколько десятков зон.

Маленькая линза собирает излучение с конкретного участка пространства и посылает на свой чувствительный элемент. Соседняя линза, контролирующая смежный участок посылает поток излучения на второй сенсор. Излучения соседних участков примерно одинаковы. При нарушении баланса, превышении какого-то порогового значения, прибор извещает контрольную панель о нарушении зоны охраны.

Схема ИК датчика

Каждый производитель имеет уникальную принципиальную схему ИК извещателя, но функционально они примерно одинаковы.

ИК датчик имеет оптическую систему, пирочувствительный элемент, блок обработки сигналов.

Оптическая система

Рабочая область современных датчиков движения весьма разнообразна благодаря различным формам оптической системы. От устройства расходятся лучи в радиальном направлении в различных плоскостях.

Так как извещатель имеет сдвоенный сенсор, то все лучи раздваиваются.

Оптическая система ориентируется таким образом, что будет контролировать только одну плоскость или несколько плоскостей на разных уровнях. Может контролировать пространство вкруговую или по лучу.

При построении оптики ИК-датчиков часто используются линзы Френеля, представляющих множество призматических фасеток на выпуклой пластиковой чашке. Каждая линза собирает ИК поток со своего участка пространства и отправляет на ПИР элемент.

Конструкция оптической системы такова, что избирательность по всем линзам одинакова. Чтобы защититься от собственного тепла элементов, насекомых в устройстве устанавливается герметичная камера. Редко используется зеркальная оптика. Это значительно повышает дальность действия устройства и цену прибора.

Пирочувствительный элемент

Роль сенсора в ИК датчике играет пироэлектрический преобразователь на чувствительных полупроводниковых элементах. Он состоит из двух сенсоров. На каждый из них от двух соседних лучей поступает поток излучения. При одинаковом равномерном фоне сенсор молчит. При возникновении дисбаланса, в одной зоне появляется дополнительный источник тепла, а в другой нет, сенсор срабатывает.

Для повышения надежности и уменьшения ложных срабатываний в последнее время стали применять счетверенные ПИР элементы. Это увеличило чувствительность и помехозащищенность прибора. Но уменьшило расстояние уверенного распознавания нарушителя. Для решения этого приходится использовать прецизионную оптику.

Блок обработки сигналов

Главной задачей блока является надежное распознавание человека на фоне помех.

Они бывают самые разнообразные:

  1. солнечное излучение;
  2. искусственные ИК источники;
  3. кондиционеры и холодильники;
  4. животные;
  5. конвекция воздуха;
  6. электромагнитные помехи;
  7. вибрация.

Блок обработки для анализа использует амплитуду, форму и длительность выходного сигнала пироэлектрического преобразователя. Воздействие нарушителя вызывает симметричный двухполярный сигнал. Помехи выдают несимметричные значения на обрабатывающий модуль. В простейшем варианте сравнивается амплитуда сигнала с пороговым значением.

При превышении порога извещатель сообщает об этом, подавая определенный сигнал на контрольную панель. В более сложных датчиках измеряется длительность превышения порога, количество этих превышений. Для повышения помехозащищенности прибора используется автоматическая термокомпенсация. Она обеспечивает постоянную чувствительность во всем диапазоне температур.

Обработка сигнала осуществляется аналоговыми и цифровыми устройствами. В новейших устройствах начали применять цифровые алгоритмы обработки сигнала, что позволило улучшить избирательность прибора.

Эффективность использования ИК извещателя в охранной сигнализации

От правильности выбора вида сенсора, расположения на объекте охраны во многом зависит его эффективность. Пассивные ИК датчики движения уличные и внутреннего применения реагируют на перемещения теплых по сравнению с фоном объектов при определенных скоростях перемещения. При маленькой скорости движения, изменения потоков инфракрасного излучения в соседних секторах настолько незначительны, что он воспринимается, как фоновый дрейф, и не реагирует на нарушение зоны охраны.

Если нарушитель облачится в защитный костюм с отличной теплоизоляцией, то ИК датчик движения не отреагирует, не будет нарушения баланса излучения в соседних зонах. Человек сольется с фоновым излучением.

Нарушитель двигается вдоль лучей извещателя движения с малой скоростью, в этом случае он нередко молчит.

Изменения потоков оказываются недостаточными для срабатывания устройства. Особенно свойственно извещателям с функцией защиты от животных. В них уменьшают чувствительность, чтобы избежать реакции на появления домашних питомцев.

Важно правильно установить инфракрасный датчик. Требуется по конфигурации здания применять устройство типа «шторка», следует так и делать. Производитель рекомендует монтаж прибора на определенной высоте, надо соблюсти и это.

Для повышения эффективности работы инфракрасных датчиков их применяют совместно с сенсорами, работающими на других принципах.

Обычно, дополнительно придается радиоволновой извещатель с высокой чувствительностью, что снижает процент ложных срабатываний и повышает надежность охранной сигнализации. При защите окон от проникновения дополнительно устанавливается ультразвуковой извещатель, реагирующий на разбитие стекла.

Заключение

Постепенно ИК датчики усложняются, повышается их чувствительность, улучшается избирательность. Сенсоры находят широкое распространение в системах «умный дом», видеонаблюдения, контроль доступа. Совместное использование с различными устройствами повысило потребительские свойства датчиков. Им уготована долгая жизнь.

Видео: Датчик движения, принцип работы

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство