Судовые системы пожаротушения. Пожарная система на судне. Общая схема спринклерной системы

Судовые системы пожаротушения. Пожарная система на судне. Общая схема спринклерной системы

05.03.2020

Судовые системы пожаротушения являются важнейшими конструктивными составляющими, при расчете и проектировании которых учитывается множество различных факторов, включая автономность корабля, ограничения габаритных размеров путей эвакуации, соседнее расположение помещений разных уровней пожарной опасности, использование горючих материалов в качестве элементов конструкции и т. п.

Указанные факторы существенно усугубляют опасность возникновения пожара на судах, поэтому особое внимание уделяется разработкам и внедрению новейших противопожарных систем, а также повышению эффективности способов обеспечения безопасности экипажа и пассажиров.

Классификация

Стационарные системы пожаротушения на судах рассчитываются еще на стадии проектирования плавучего средства, и полностью устанавливаются во время его закладки. Сегодня суда торгового флота Российской Федерации оснащаются противопожарными установками, которые делят, в зависимости от конкретной задачи, на:

  • Водяные, использующиеся для защиты жилых кают, общественных помещений судна и отсеков с горючими и/или легковоспламеняющимися веществами;
  • Газовые (на основе инертных газов и углекислоты), монтируемые в местах, где высока вероятность возникновения пожаров С-класса;
  • Пенные (с тушащим веществом в виде пены средней и высокой плотности), устанавливаемые в помещениях, где могут возникнуть возгорания класса В;
  • Порошковые – использующиеся для защиты помещений, где вероятно возникновение пожара класса С

Кроме того, на судах речного флота, предназначенных для перевозки пассажиров, традиционно применяется система аэрозольного объемного пожаротушения (АОТ). Эта система монтируется в:

  • машинном отделении, где располагаются силовые агрегаты, работающие на жидком горючем;
  • генераторной, где находятся источники аварийного и основного электричества;
  • зонах установки гребных электродвигателей;
  • местах расположения распределительных щитков и у разветвления электромагистралей;
  • сетях вентиляции оборудования.

Требования к судовым системам пожаротушения

Рабочие модули АОТ, представляющие собой баллоны с огнетушащим составом и детектором возгорания, подключаются к сети внешнего управления и оповещения. Кроме того, каждый модуль может быть активирован вручную, без участия автоматики.

Водяные системы пожаротушения на судне. Они монтируются в процессе закладки корабля, могут быть линейными или кольцевыми, с диаметром труб до 150-ти миллиметров. Последний аспект обусловлен необходимостью обеспечения напор воды в 350 кПа, а на грузовых кораблях — 520 кПа.

При этом, пассажирские плавсредства обычно укомплектованы спринклерными системами с распылителями, в то время, как на грузовые суда предпочтительнее устанавливать дренчерные системы, способными сформировать водяную завесу в местах, где монтаж огнеупорной перегородки невозможен.

Что до систем газового пожаротушения, то их применение ограничивается помещениями с вспомогательными генераторами и насосами, а также грузовыми отсеками различных судов. При этом объемные струи подачи газа направляются непосредственно на генераторы.

1. Системы пожаротушения

Системы пожаротушения на корабле являются чрезвычайно важными составляющими конструкции судна. При их проектировании учитываются многие факторы: автономность судна, наличие горючих материалов в конструкции, размещение рядом помещений с различными уровнями пожарной опасности, ограничения по ширине путей эвакуации.

Разновидности судовых систем пожаротушения:

Спринклерные с ручным или автоматическим активированием;

Водяных завес;

Водяного распыления или орошения;

Газовые - на основе углекислоты или инертных газов;

Порошковые.

Каждая из систем пожаротушения на судне используется для решения конкретной узконаправленной задачи:

Водяные - используются для защиты общественных и жилых помещений корабля и его коридоров, а также помещений где хранятся твердые легко воспламеняемые и горючие вещества;

Пенные - устанавливаются в помещениях где могут возникнуть пожары класса В;

Газовые и порошковые - используются для защиты от возгорания класса С.

Система аэрозольного объемного пожаротушения (АОТ)

Система объемного пожаротушения на судне устанавливается в основном на пассажирских плавательных средствах речного флота.

Она размещается в следующих местах:

Машинном отделении, главных и вспомогательных двигателей, которые работают на жидком топливе;

В помещениях котлов и генераторов основных и аварийных источников электричества;

В местах разветвления главных энергетических магистралей и распределительных щитков;

В местах установки электродвигателей, как вспомогательных, так и основных - гребных;

В сетях вентиляции оборудования.

Рабочие пожаротушащие устройства представляют собой автономные модули ТОР-1500 и ТОР-3000 подключенные к единой сети внешнего управления и оповещения. Каждый модуль является баллоном с огнетушащим веществом с вмонтированным в него оптико-электронным детектором определения горения.

Баллоны подключены к центральному аппарату и могут активироваться вручную по команде капитана или дежурного из рубки корабля.

Водяное пожаротушение на судне

Система водяного пожаротушения на корабле монтируется при его закладке. Она может быть двух типов - кольцевая и линейная. Магистральные трубы, по которым поступает вода, имеют диаметр до 150 мм, а рабочие до 64 мм. Такой диаметр должен обеспечивать напор воды, в самой дальней точке подключения на судне, 350 кПа на грузовых судах и 520 кПа.

Внешнее пожаротушение - когда ситуация становится особо опасной

Участки трубопровода, которые подвергаются воздействию внешней среды и могут замерзнуть подвергаются обвязке с использованием спускного и отсечного клапана, для того чтобы при их исключении из общей системы она продолжала функционировать. Расстояние между пожарными кранами различное. Внутри судна оно составляет до 20 м при комплектации 10-15 м пожарными рукавами. На палубе дальность может составлять до 40 м при комплектации каждого крана рукавом 15-20 м.

Жилые отсеки комплектуются спринклерными системами, оборудованными распылителями с плавкими вставками, с максимальной температурой разрушения 60°С. Устройство состоит из распылителей (спринклеров) трубопровода и пневмогидравлической цистерны под давлением. Минимальная производительность одного спринклера, регламентированная нормативами, составляет 5л на 1 м2 каюты.

Дренчерными системами комплектуются в основном грузовые суда: газовозы, танкеры, сухогрузы и контейнеровозы -- размещение груза на которых осуществляется горизонтальным способом. Основной конструктивной особенностью является наличие насоса, который при срабатывании сигнала тревоги начинает забор воды и ее подачу к в дренчерный трубопровод. Дренчерные системы используются для формирования водяных завес в тех местах корабля где невозможно установить противопожарные перегородки.

Газовые системы пожаротушения на суднах

Газовая система пожаротушения на судне применяется исключительно в грузовых отсеках и в помещениях вспомогательных генераторов и насосов на камбузе. В двигательном отделении как во всем помещении, так и локально с направлением объемной струи непосредственно на генераторы. Ее высокая эффективность сочетается с не менее высокой стоимостью обслуживания самой системы и необходимости периодической замены огнетушащего вещества.

В последнее время на кораблях стали отказываться от использования углекислого газа в качестве огнетушащего вещества. Вместо него предпочтительней использование ОВ из семейства хладонов. Разновидность систем управления газовой установкой пожаротушения зависит от рабочего давления в трубопроводах:

Для устройств с низким давлением пуск и регулировка интенсивности потока осуществляется вручную;

Для систем среднего давления предусмотрены дублирующие приборы управления пожаротушением.

Краткая характеристика пожаров

Пожары на кораблях и судах имеют ряд специфических особенностей из-за сложности планировки помещений, ограниченности площадей, большой насыщенности техникой, наличием горючих материалов, топлива и боеприпасов.

Тушение пожаров на кораблях требует от личного состава подразделений службы противопожарной защиты и спасательных работ знания основ устройства кораблей.

Пожары на кораблях характеризуются:

быстрым распространением огня вследствие большого количества горючих материалов;

нагревом металлических переборок, палуб и возможностью распространения через них, а также через люки, двери, вентиляцию и различные устройства огня в смежные помещения;

ограниченностью подачи воды для сохранения устойчивости и плавучести корабля;

задымлением помещений.

Руководство тушением пожаров на кораблях (судах) осуществляют командиры кораблей (судов), а на строящихся и капитально ремонтирующихся кораблях - должностные лица завода.

Разведкой пожара на корабле определяются:

наличие огнеопасных веществ и материалов в горящем и смежных с ним помещениях (отсеках);

возможные пути распространения огня в смежные помещения через переборки, палубы, люки, двери, вентиляцию и другие устройства;

наличие и состояние электроустановок;

состояние и возможность использования корабельных установок пожаротушения; пожаротушение корабль судно вентиляция

возможность взрывов и отравлений.

Основные способы пожаротушения

подача огнетушащих средств непосредственно на поверхность горящего материала (для его охлаждения, ограничения доступа воздуха и защиты от воздействия пламени);

герметизация помещений (отсеков) и наполнение их инертными газами или веществами, тормозящими горение.

Для тушения пожаров на кораблях применяются следующие огнетушащие средства:

вода (пар);

воздушно-механическая и химическая пена;

углекислый и другие инертные газы;

жидкостные огнегасительные составы;

порошковые составы.

Практически ликвидация горения при пожарах производится одновременным применением нескольких способов. Имеется несколько разновидностей способа тушения, основанного на удалении окислителя или снижении его процентного содержания в горючей среде. Основными из них являются:

Тушение методом изоляции горящих объектов от окружающей среды (закрытие или перекрытие или заделка всех отверстий и проемов).

Тушение методом затопления или заполнения горящих веществ негорючими веществами.

Способ тушения пожаров, основанный на прекращении доступа горючих веществ в зону горения, заключается в перекрытии задвижек и шиберов, постановке заглушек, установке колпаков с системой отводящих трубопроводов, устройстве гидравлических затворов и разобщении реагирующих веществ (кошма, засыпка песком, землей и т.д.).

Способ тушения, основанный на удалении горючих веществ, находящихся близ зон горения, заключается в устройстве разрывов и спуске горящей жидкости из резервуаров.

Способ тушения, основанный на разрушении зон горения, включает использование взрывчатых веществ и удаление горящих веществ для догорания в безопасные места.

Способ тушения, основанный на снижении температуры горящего вещества, заключается в перемешивании масс горящей жидкости, имеющей высокую температуру вспышки.

Какие стационарные системы пожаротушения применяются на судах?

К системам пожаротушения на судах относятся:

●системы водяного пожаротушения;

●системы пенотушения низкой и средней кратности;

●системы объемного тушения;

●системы порошкового тушения;

●системы паротушения;

●системы аэрозольного тушения;

Судовые помещения в зависимости от их назначения и степени пожароопасности должны оборудоваться различными системами пожаротушения. В таблице указаны требования Правил Регистра РФ к оборудованию помещений системами пожаротушения.

К стационарным системам водяного пожаротушения относятся системы, использующие в качестве основного огнетушащего вещества воду:

  • противопожарная водяная система;
  • системы водораспыления и орошения;
  • система затопления отдельных помещений;
  • спринклерная система;
  • дренчерная система;
  • система водяного тумана или тонко распыленной воды.

К стационарным системам объемного тушения относятся следующие системы:

  • система углекислотного тушения;
  • система азотного тушения;
  • система жидкостного тушения (на фреонах);
  • система объемного пенотушения;

Кроме систем тушения пожаров на судах применяются системы предупреждающие пожары, к таким системам относится система инертных газов.

Каковы конструктивные особенности водяной противопожарной системы?

Система устанавливается на всех типах судов и является основной как для тушения пожаров, так и системой водоснабжения для обеспечения работы других систем пожаротушения, общесудовых систем, мытья танков, цистерн, палуб, для обмывки якорных цепей и клюзов.

Главные преимущества системы:

Неограниченные запасы забортной воды;

Дешевизна огнетушащего вещества;

Высокая огнетушащая способность воды;

Высокая живучесть современных ВПС.

В состав системы входят следующие основные элементы:

1. Приемные кингстоны в подводной части судна для приема воды в любых условиях эксплуатации, в т.ч. крена, дифферента, бортовой и килевой качки.

2. Фильтры (грязевые коробки) для предохранения трубопроводов и насосов системы от засорения их мусором и другими отходами.

3. Клапан невозвратный, не позволяющий опорожняться системе при остановке пожарных насосов.

4. Основные пожарные насосы с электро- или дизельными приводами для подачи забортной воды в пожарную магистраль к пожарным кранам, лафетным стволам и другим потребителям.

5. Аварийный пожарный насос с независимым приводом для подачи забортной воды в случае выхода из строя основных пожарных насосов со своим кингстоном, клинкетной задвижкой, предохранительным клапаном и прибором контроля.

6. Манометры и мановакууметры.

7. Пожарные краны (концевые клапаны) расположенные по всему судну.

8. Клапаны пожарной магистрали (запорные, невозвратно-запорные, секущие, отсечные).

9. Трубопроводы пожарной магистрали.

10. Техническая документация и запасные части.

Пожарные насосы подразделяются на 3 типа:

1. основные пожарные насосы, установленные в машинных помещениях;

2. аварийный пожарный насос, расположенный вне машинных помещений;

3. насосы, допускаемые в качестве пожарных насосов (санитарные, балластные, осушительные, общего пользования, если они не используются для перекачки нефти) на грузовых судах.

Аварийный пожарный насос (АПЖН), его кингстон, приемный отросток трубопровода, нагнетательный трубопровод и отсечные клапаны располагаются вне машинного посещения. Аварийный пожарный насос должен быть стационарным насосом с независимым приводом от источника энергии, т.е. его электродвигатель должен запитываться и от аварийного дизель-генератора.

Пожарные насосы могут запускаться и останавливаться как с местных постов у насосов, так и дистанционно с ходового мостика и ЦПУ.

Какие требования предъявляются к пожарным насосам?

Суда обеспечиваются пожарными насосами с независимым приводом, следующим образом:

●пассажирские суда валовой вместимостью 4000 и более должны иметь - по меньшей мере, три, менее 4000 – по меньшей мере два.

●грузовые суда валовой вместимостью 1000 и более – по меньшей мере, два, менее 1000 – по меньшей мере, два насоса с приводом от источника энергии, один из которых имеет независимый привод.

Минимальное давление воды во всех пожарных кранах при работе двух пожарных насосов должно быть:

● для пассажирских судов валовой вместимостью 4000 и более 0,40 Н/мм, менее 4000 – 0,30 Н/мм;

● для грузовых судов валовой вместимостью 6000 и более – 0,27 Н/мм, менее 6000 – 0,25 Н/мм.

Подача каждого пожарного насоса должна быть не менее 25 м/ч, а общая подача воды на грузовом судне не должна превышать 180 м/ч.

Размещаются насосы в разных отсеках, если это не возможно, то должен быть предусмотрен аварийный пожарный насос с собственным источником энергии и кингстоном, расположенными вне помещения, где находятся главные пожарные насосы.

Производительность аварийного пожарного насоса должна быть не менее 40% от общей производительности пожарных насосов, и в любом случае не менее, указанной ниже:

● на пассажирских судах вместимостью менее 1000 и на грузовых 2000 и более – 25 м/ч; и

● на грузовых судах валовой вместимостью мене 2000 – 15 м/ч.

Принципиальная схема водяной пожарной системы на танкере

1 – кингстонная магистраль; 2 – пожарный насос; 3 – фильтр; 4 – кингстон;

5 – трубопровод подачи воды к пожарным кранам, расположенных в кормовой надстройке; 6 – трубопровод подачи воды в систему пенного пожаротушения;

7 – сдвоенные пожарные краны на палубе юта; 8 – палубная пожарная магистраль; 9 – запорный клапан для отключения поврежденного участка пожарной магистрали; 10 -сдвоенные пожарные краны на палубе бака; 11 – невозвратно–запорный клапан; 12 – манометр; 13 – аварийный пожарный насос; 14 – клинкетная задвижка.

Схема построения системы линейная, питается от двух основных пожарных насосов (2), расположенных в МО и аварийного пожарного насоса (13) АПЖН на баке. На входе, в пожарные насосы установлены кингстон (4), путевой фильтр (грязевая коробка) (3) и клинкетная задвижка (14). За насосом устанавливается невозвратно-запорный клапан для предотвращения стекания воды из магистрали при остановке насоса. За каждым насосом устанавливается пожарный клапан.

От основной магистрали через клинкетные задвижки имеются ответвления (5 и 6) в надстройку, от которых запитываются пожарные краны и другие потребители забортной воды.

Пожарная магистраль проложена на грузовой палубе, имеет ответвления через каждые 20 метров на сдвоенные пожарные краны (7). На магистральном трубопроводе устанавливаются через каждые 30-40 м секущие пожарной магистрали.

По Правилам морского Регистра во внутренних помещениях в основном устанавливаются переносные пожарные стволы с диаметром спрыска 13 мм, а на открытых палубах – 16 или 19 мм. Поэтому пожарные краны (гидраты) устанавливаются с D у 50 и 71 мм соответственно.

На палубе бака и юта перед рубкой устанавливаются побортно сдвоенные пожарные краны (10 и 7).

При стоянке судна в порту противопожарная водяная система может запитываться от международного берегового соединения с помощью пожарных рукавов.

Как устроены системы водораспыления и орошения?

Система водораспыления в помещениях специальной категории, а также в машинных помещениях категории А прочих судов и насосных помещений должна питаться от независимого насоса, автоматически включающегося при падении давления в системе, от водопожарной магистрали.

В других защищаемых помещениях допускается питание системы только от водопожарной магистрали.

В помещениях специальной категории, а также в машинных помещениях категории А прочих судов и насосных помещений система водораспыления должна быть постоянно заполнена водой и находиться под давлением до распределительных клапанов на трубопроводах.

На приемной трубе насоса, питающего систему, и на соединительном трубопроводе с водопожарной магистралью должны быть установлены фильтры, исключающие засорение системы и распылителей.

Распределительные клапаны должны располагаться в легкодоступных местах вне защищаемого помещения.

В защищаемых помещениях с постоянным пребыванием людей должно быть предусмотрено дистанционное управление распределительными клапанами из этих помещений.

Система водораспыления в машинно-котельном отделении

1 – втулка валикового привода; 2 – валик привода; 3 - кран спускной импульсного трубопровода; 4 – трубопровод верхнего водораспыления; 5 – трубопровод импульсный; 6 – клапан быстродействующий; 7 – пожарная магистраль; 8 – трубопровод нижнего водораспыления; 9 – распылительная насадка; 10 – кран сливной.

Распылители в защищаемых помещениях должны быть размещены в следующих местах:

1. под подволоком помещения;

2. в шахтах машинных помещений категории А;

3. над оборудованием и механизмами, работа которых связана с использованием жидкого топлива или других воспламеняющихся жидкостей;

4. над поверхностями, по которым может растекаться жидкое топливо или воспламеняющиеся жидкости;

5. над штабелями мешков с рыбной мукой.

Распылители в защищаемом помещении должны быть расположены таким образом, чтобы зона действия любого распылителя перекрывала зоны действия смежных распылителей.

Насос может иметь привод от независимого двигателя внутреннего сгорания, расположенного так, чтобы пожар в защищаемом помещении не влиял на подачу воздуха к нему.

Данная система позволяет тушить пожар в МО под сланями распылителями нижнего водораспыления или и одновременно верхнего водораспыления.

Как работает спринклерная система?

Такими системами оборудуются пассажирские суда и грузовые суда по методу защиты IIC для подачи сигнала о пожаре и автоматического пожаротушения в защищаемых помещениях в диапазоне температур от 68 0 до 79 0 С, в сушилках при температуре, превышающей максимальную температуру в Районе подволока не более чем 30 0 С и в саунах до 140 0 С включительно.

Система автоматическая: при достижении предельных температур в охраняемых помещениях в зависимости от площади пожара автоматически открывается один или несколько спринклеров (водяной распылитель), через него для тушения подается пресная вода, когда ее запас закончится, тушение пожара будет продолжено забортной водой без вмешательства экипажа судна.

Общая схема спринклерной системы

1 – спринклеры; 2 – водяная магистраль; 3 – распределительная станция;

4 – спринклерный насос; 5 – пневмоцистерна.

Принципиальная схема спринклерной системы

Система состоит из следующих элементов:

Спринклеры, сгруппированные в отдельные секции не более 200 в каждой;

Главное и секционные контрольно-сигнальные устройства (КСУ);

Блок пресной воды;

Блок забортной воды;

Панели визуальных и звуковых сигналов о срабатывании спринклеров;

Спринклеры – это распылители закрытого типа, внутри которых расположены:

1) чувствительный элемент – стеклянная колба с легкоиспаряющейся жидкостью (эфир, спирт, галлон) или легкоплавкий замок из сплава Вуда (вставка);

2) клапан и диафрагма, закрывающие отверстие в распылителе для подачи воды;

3) розетка (рассекатель) для создания водного факела.

Спринклеры должны:

Срабатывать при повышении температуры до заданных величин;

Быть стойкими к коррозии в условиях воздействия морского воздуха;

Устанавливаться в верхней части помещения и размещаться так, чтобы подавать воду на номинальную площадь с интенсивностью не менее 5 л/м 2 в минуту.

Спринклеры в жилых и служебных помещениях должны срабатывать в интервале температур 68 - 79°С, за исключением спринк­леров в сушильных и камбузных помещениях, где температура срабатывания может быть увеличе­на до уровня, превышающего температуру у подволока не более чем на 30°С.

Контрольно-сигнальные устройства (КСУ ) устанавливаются на питающем трубопроводе каждой секции спринклеров вне защищаемых помещений и выполняют следующие функции:

1) подают сигнал тревоги при вскрытии спринклеров;

2) открывают пути подачи воды от источников водопитания к работающим спринклерам;

3) обеспечивают возможность проверки давления в системе и ее работоспособности с помощью пробного (спускного) клапана и контрольных манометров.

Блок пресной воды поддерживает давление в системе на участке от напорной цистерны до спринклеров в дежурном режиме, когда спринклеры закрыты, а также питания спринклеров пресной водой в период запуска спринклерного насоса блока забортной воды.

В блок входят:

1) Напорная пневмогидроцистерна (НПГЦ) с водомерным стеклом, вместимостью на два запаса воды, равных двум производительностям спринклерного насоса блока забортной воды за 1 минуту для одновременного орошения площади не менее 280 м 2 при интенсивности не менее 5 л/м 2 в минуту.

2) Средства для предотвращения попадания забортной воды в цистерну.

3) Средства для подачи сжатого воздуха в НПГЦ и поддержания в ней такого давления воздуха, которое после израсходования постоянного запаса пресной воды в цистерне обеспечивало бы давление не ниже, чем рабочее давление спринклера (0,15 МПа) плюс давление столба воды, измеренного от дна цистерны до наиболее высоко расположенного спринклера системы (компрессор, редукционный клапан, баллон сжатого воздуха, предохранительный клапан и др.).

4) Спринклерный насос для пополнения запаса пресной воды, включающийся автоматически при падении давления в системе, до того как постоянный запас пресной воды в напорной цистерне будет израсходован полностью.

5) Трубопроводы из стальных оцинкованных труб, расположенные под подволоком защищаемых помещений.

Блок забортной воды подает забортную воду в открывшиеся, после срабатывания чувствительных элементов, спринклеры для орошения помещений распыленной струей и тушения пожара.

В блок входят:

1) Независимый спринклерный насос с манометром и системой трубопроводов для непрерывной автоматической подачи забортной воды к спринклерам.

2) Пробный клапан на напорной стороне насоса с короткой выпускной трубой, имеющей открытый конец для обеспечения пропуска воды по производительности насоса плюс давление столба воды, измеренного от дна НПГЦ до самого высокорасположенного спринклера.

3) Кингстон для независимого насоса.

4) Фильтр для очистки забортной воды от мусора и др. предметов перед насосом.

5) Реле давления.

6) Пусковое реле насоса, автоматически включающее насос при падении давления в системе питания спринклеров до того, как постоянный запас пресной воды в НПГЦ будет полностью израсходован.

Панели визуальных и звуковых сигналов о срабатывании спринклеров устанавливаются на ходовом мостике или в ЦПУ с постоянной вахтой и кроме того визуальные и звуковые сигналы от панели выводятся в другое место, чтобы обеспечить немедленное принятие экипажем сигнала о пожаре.

Система должна быть заполнена водой, но небольшие наружные участки могут не заполняться водой, если это является необходимой мерой предосторожности при отрицательных температурах.

Любая такая система должна быть всегда готова к немедленному срабатыванию и приводиться в действие без какого-либо вмешательства экипажа.

Как устроена дренчерная система?

Применяется для защиты больших пространств палуб от пожара.

Схема дренчерной системы на судне РО-РО

1 – распыливающая головка (дренчеры); 2 – магистраль; 3 - распределительная станция; 4 – насос пожарный или дренчерный.

Система не автоматическая, орошает водой из дренчеров одновременно значительные площади по выбору команды, использует для тушения забортную воду, поэтом находится в опорожненном состоянии. Дренчеры (распылители воды) имеют конструкцию аналогичную спринклерам но без чувствительного элемента. Запитывается водой от пожарного насоса или отдельного дренчерного насоса.

Как устроена система пенотушения?

Первая система пожаротушения воздушно – механической пеной была установлена на советском танкере «Апшерон» дедвейтом 13200 т, построенном в 1952 г в Копенгагене. На открытой палубе для каждого защищаемого отсека устанавливали: стационарный воздушно – пенный ствол (пенный монитор или лафетный ствол) низкой кратности, палубную магистраль (трубопровод) подачи раствора пенообразователя. К каждому стволу палубной магистрали подводили ответвление, снабженное дистанционно управляемым клапаном. Раствор пенообразователя приготавливался в 2 станциях пенотушения носовой и кормовой и подавался в палубную магистраль. На открытой палубе устанавливались пожарные краны для подачи раствора ПО по пенным рукавам к переносным воздушно – пенным стволам или пеногенераторам.

станции пенотушения

Система пенотушения

1 – кингстон; 2 – пожарный насос; 3 – лафетный ствол; 4 – пеногенераторы, пенные стволы; 5 – магистраль; 6 – аварийный пожарный насос.

3.9.7.1. Основные требования к системам пенотушения . Производительность каждого лафетного ствола должна быть не менее 50% расчетной производительности системы. Длина пенной струи должна быть не менее 40 м. Расстояние между соседними лафетными стволами, установленными вдоль танкера, не должна превышать 75 % дальности полета струи пены от ствола при отсутствии ветра. Сдвоенные пожарные краны равномерно устанавливаются вдоль судна на расстоянии не более 20 м друг от друга. Перед каждым лафетным стволом должен устанавливаться запорный клапан.

Для повышения живучести системы на магистральном трубопроводе устанавливаются через каждые 30 – 40 метров секущие клапана, с помощью которых можно отключить поврежденный участок. Для повышения живучести танкера при пожаре в грузовой зоне на палубе первого яруса кормовой рубки или надстройки устанавливают два лафетных ствола побортно и сдвоенные пожарные краны подачи раствора к переносным пеногенераторам или стволам.

Система пенотушения кроме магистрального трубопровода, проложенного по грузовой палубе имеет ответвления в надстройку и в МО, которые заканчиваются пожарными пенными клапанами (гидрантами пены), от которых можно использовать переносные воздушно – пенные стволы или более эффективные переносные пеногенераторы средней кратности.

Практически все грузовые суда комбинируют в грузовой зоне две системы водяного пожаротушения и трубопровод пенного пожаротушения путем прокладки параллельно этих двух трубопроводов и отводы от них к лафетным комбинированным пенно – водным стволам. Это значительно повышает живучесть судна в целом и возможность применять наиболее эффективные огнетушащие вещества в зависимости от класса пожара.

Стационарная система пенотушения с основными потребителями

1 - лафетный ствол (на ВП); 2 - пенообразующие головки (помещениях); 3 - генератор среднекратной пены (на ВП и в помещениях);

4 - ручной пенный ствол; 5 - смеситель

Станция пенотушения является составной частью системы пенотушения. Назначение станции: хранение и обслуживание пенообразователя (ПО); пополнение запасов и выгрузка ПО, приготовление раствора пенообразователя; промывка системы водой.

В состав станции пенотушения входит: цистерна с запасом ПО, трубопровод подачи забортной (очень редко пресной воды), трубопровод рециркуляции ПО (перемешивание ПО в цистерне), трубопровод раствора ПО, арматура, КИП, дозирующее устройство. Очень важно поддерживать постоянное процентное со

отношение ПО – вода, т.к. от этого зависит качество и количество пены.

Каковы действия по использованию пеностанции?

ЗАПУСК ПЕНОСТАНЦИИ

1. ОТКРЫТЬ КЛАПАН “ B “

2. ЗАПУСТИТЬ ПОЖАРНЫЙ НАСОС

3. ОТКРЫТЬ КЛАПАНА “ D “ и “ E “ 4. ЗАПУСТИТЬ НАСОС ПОДАЧИ ПЕНООБРАЗОВАТЕЛЯ

(ПРЕДВАРИТЕЛЬНО ПРОВЕРИВ, ЧТО КЛАПАН “ C “ ЗАКРЫТ)

5. ОТКРЫТЬ КЛАПАН НА ПЕННЫЙ МОНИТОР (ИЛИ ПОЖАРНЫЙ ГИДРАНТ),

И ПРИСТУПИТЬ К ТУШЕНИЮ

ПОЖАРА.

ТУШЕНИЕ ГОРЯЩЕЙ НЕФТИ

1. Никогда не направлять пенную струю прямо на горящую нефть, т.к. это может вызвать разбрызгивание горящей нефти и распространение пожара

2. Направлять пенную струю нужно так, что бы пенная смесь “наплывала” на горящую нефть слой за слоем и покрывала горящую поверхность. Для этого можно использовать преобладающее направление ветра или особенности наклона палубы, где это возможно.

3. Использовать нужно один монитор и/или два пенных ствола

Станция пенотушения лафетный ствол

Стационарные системы объемного пенотушения предназначены для тушения пожаров в МО и других специально оборудованных помещениях путем подачи в них высокократной и среднекратной пены.

Каковы конструктивные особенности системы среднекратного пенотушения?

Среднекратное объемное пенотушение использует несколько стационарно установленных в верхней части помещения пеногенераторов средней кратности. Пеногенераторы устанавливаются над основными источниками пожара, часто на разных уровнях МО, чтобы охватить как можно больше площади тушения. Все пеногенераторы или их группы соединены со станцией пенотушения вынесенной за пределы охраняемого помещения трубопроводами раствора пенообразователя. Принцип действия и устройство станции пенотушения аналогично обычной станции пенотушения, рассматриваемой ранее.

Недостатки дайной системы:

Относительно низкая кратность воздушно-механической пены, т.е. меньший огнетушащий эффект по сравнению с высокократной пеной;

Больший расход пенообразователя; по сравнению с высокократной пеной;

Выход из строя электрооборудования и элементов автоматики после применения системы, т.к. раствор пенообразователя приготавливают на забортной воде (пена становится электропроводимой);

Резкое снижение кратности пены при эжектировании пеногенератором горячих продуктов горения (при температуре газов ≈130 0 С кратность пены уменьшается в 2 раза, при 200 0 С – в 6 раз).

Положительные показатели:

Простота конструкции; малая металлоемкость;

Использование станции пенотушения, предназначенной для тушения пожаров на грузовой палубе.

Данная система надежно тушит пожар на механизмах, двигателях, разлитое топливо и масло на пайолах и под ними, но практически не тушит пожары и тление в верхних частях переборок и на подволоке, тепловой изоляции трубопроводов и горящей изоляции электропотребителей из-за относительно небольшого слоя пены.

Схема системы среднекратного объемного пенотушения

Каковы конструктивные особенности системы объемного пожаротушения высокократной пеной?

Данная система пожаротушения гораздо мощнее и эффективнее предыдущей системы среднекратного тушения, т.к. использует более эффективную высокократную пену, которая обладает значительным огнетушащим эффектом, заполняет полностью помещение пеной, вытесняя газы, дым, воздух и пары горючих материалов через специально открытый световой люк или вентиляционные закрытия.

Станция приготовления раствора пенообразователя использует пресную или опресненную воду, что значительно улучшает пенообразование и делает неэлектропроводной. Для получения высокократной пены применяется более концентрированный раствор ПО, чем в других системах, примерно в 2 раза. Для получения высокократной пены используются стационарные генераторы высокократной пены. Пена в помещение подается либо непосредственно из выходного патрубка генератора, либо по специальным каналам. Каналы и выход с крышки подачи выполнены из стали, должны герметично закрываться, чтобы не пропустить пожар в станцию пожаротушения. Крышки открываются автоматически или вручную одновременно с подачей пены. Пену подают в МО на уровнях платформ в тех местах, где нет препятствий для распространения пены. Если внутри МО есть выгороженные мастерские, кладовые, то их переборки должны быть сконструированы таким образом, чтобы в них попала пена, или необходимо подводить к ним отдельные клапаны.

Принципиальная схема получения тысячекратной пены

Принципиальная схема объемного пожаротушения высокократной пеной

1 - Цистерна пресной воды; 2 - Насос; 3 - Цистерна с пенообразователем;

4 – электровентилятор; 5 - Переключающее устройство; 6 - Световой люк; 7 - Жалюзи подачи пены; 8 - Верхнее закрытие канала для выпуска пены на палубу; 9 - Дроссельный шайбы;

10 - Пенообразующие сетки пеногенератора высокократной пены

Если площадь помещения превышает 400м 2 , то рекомендуется вводить пену не менее чем в 2-х местах, расположенных в противоположенных частях помещения.

Для проверки в действии системы в верхней части канала устанавливается переключающее устройство (8), отводящее пену за пределы помещения на палубу. Запас пенообразователя для замены систем должен быть пятикратным для тушения пожара в наибольшем помещении. Производительность пеногенераторов должна быть такой, что он заполнить помещение пеной за 15 минут.

Высокократную пену получают в генераторах с принудительной подачей воздуха на пенообразующую сетку, смачиваемую раствором пенообразователя. Для подачи воздуха используется осевой вентилятор. Для нанесения раствора пенообразователя на сетку установлены центробежные распылители с камерой закручивания. Такие распылители просты по конструкции и надежны в эксплуатации, не имеют подвижных частей. Генераторы ГВПВ-100 и ГВГВ-160 снабжены одним распылителем, другие генераторы имеют по 4 распылителя, установленные перед вершинами пирамидальных пенообразующих сеток.

Назначение, устройство и типы систем углекислотного тушения?

Углекислотное пожаротушение как объемный способ начали применять в 50-е годы прошлого века. До этого времени очень широко применяли паротушение, т.к. большинство судов были с паротурбинными энергетическими установками. Углекислотное тушение пожара не требует никаких видов судовой энергии для приведения в действие установки, т.е. она полностью автономна.

Данная система пожаротушения предназначена для тушения пожаров в специально оборудованных, т.е. охраняемых помещениях (МО, помповые помещения, малярные кладовые, кладовые с огнеопасными материалами, грузовые помещения в основном на сухогрузных судах, грузовые палубы на судах РО-РО). Эти помещения должны быть герметичными и оборудованы трубопроводами с распылителями или соплами подачи жидкой углекислоты. В этих помещениях устанавливается звуковая (ревуны, звонки) и световая («Уходи! Газ!») предупредительная сигнализация о включении системы объемного пожаротушения.

Состав системы:

Станция углекислотного пожаротушения, где хранятся запасы углекислоты;

Минимум две пусковые станции для дистанционного приведения в действие станции пожаротушения, т.е. для выпуска жидкой углекислоты в определенное помещение;

Кольцевой трубопровод с соплами под подволоком (иногда на разных уровнях) охраняемого помещения;

Звуковая и световая сигнализация, предупреждающая экипаж о приведении в действие системы;

Элементы системы автоматики, отключающие вентиляцию в этом помещении и перекрывающие быстрозапорные клапаны подачи топлива к действующим главным и вспомогательным механизмам для их дистанционной остановки (только для МО).

Существует два основных типа систем углекислотного пожаротушения:

Система высокого давления – хранение сжиженного СО 2 производится в баллонах при расчетном (заправочном) давлении 125 кг/см 2 (наполнение углекислотой 0,675 кг/л объема баллона) и 150 кг/см 2 (наполнение 0,75 кг/л);

Система низкого давления – расчетное количество сжиженного СО 2 хранится в резервуаре при рабочем давлении около 20 кг/см 2 , что обеспечивается поддержанием температуры СО 2 около минус 15 0 С. Резервуар обслуживается двумя автономными холодильными установками для поддержания отрицательной температуры СО 2 в резервуаре.

Каковы конструктивные особенности системы углекислотного тушения высокого давления?

Станция тушения СО 2 – отдельное теплоизолированное помещение с мощной принудительной вентиляцией, находящиеся вне охраняемого помещения. На специальных подставках установлены двойные ряды баллонов объемом 67,5 л. Баллоны заполнены жидкой углекислотой в количестве 45 ± 0,5 кг.

Головки баллонов имеют быстровскрывающиеся клапаны (клапаны полной подачи) и соединены гибкими шлангами с коллектором. Баллоны сгруппированы в батареи баллонов единым коллектором. Этого количества баллонов должно хватить (согласно расчетов) для тушения в определенном объеме. В станции СО 2 тушения может быть сгруппировано несколько групп баллонов для тушения пожаров в нескольких помещениях. При открытии клапана баллона газообразная фаза СО 2 вытесняет жидкую углекислоту по сифонной трубке в коллектор. На коллекторе установлен предохранительный клапан, стравливающий углекислый газ при превышении предельного давления СО 2 за пределы станции. На конце коллектора устанавливается запорный клапан подачи углекислоты в охраняемое помещение. Этот клапан открывается как вручную, так и сжатым воздухом (или СО 2 , или азотом) дистанционно от пускового баллона (основной способ управления). Открывание клапанов баллонов с СО 2 в систему производится:

Вручную с помощью механического привода открываются клапаны головок целого ряда баллонов (устаревшая конструкция);

С помощью сервомотора, который способен открыть большое количество баллонов;

Вручную путем выпуска СО 2 из одного баллона в пусковую систему группы баллонов;

Дистанционно с помощью углекислого газа или сжатого воздуха от пускового баллона.

Станция СО 2 тушения должна иметь приспособление для взвешивания баллонов или приборы для определения уровня жидкости в баллоне. По уровню жидкой фазы СО 2 и температуре окружающей среды можно определить вес СО 2 по таблицам или графикам.

Каково назначение пусковой станции?

Пусковые станции устанавливаются вне помещения и вне станции СО 2 . Она состоит из двух пусковых баллонов, КИП, трубопроводов, арматуры, конечных выключателей. Пусковые станции монтируются в специальных шкафах, закрываемых на ключ, ключ находится рядом со шкафом в специальном футляре. При открывании дверей шкафа срабатывают конечные выключатели, которые отключают вентиляцию в охраняемом помещении и подают электропитание на пневмоактуатор (механизм, открывающий клапан подачи СО 2 в помещение) и на звуковую и световую сигнализацию. В помещении загорается табло «Уходи! Газ!» или загораются проблесковые лампы синего цвета, и подается звуковой сигнал ревуном или звонками громкого боя. При открывании клапана правого пускового баллона сжатый воздух или углекислота подается на пневмоклапан и открывается подача СО 2 в соответствующее помещение.

Как включить систему углекислотного пожаротушения для помпо вого и машинного отделений.

2. УБЕДИТЬСЯ, ЧТО ВСЕ ЛЮДИ ПОКИНУЛИ ПОМПОВОЕ ОТДЕЛЕНИЕ, ЗАЩИЩАЕМОЕ СИСТЕМОЙ СО2.

3. ПРОИЗВЕСТИ ГЕРМЕТИЗАЦИЮ ПОМПОВОГО ОТДЕЛЕНИЯ.

6. СИСТЕМА В РАБОТЕ.

1. ОТКРЫТЬ ДВЕРЬ ШКАФА УПРАВЛЕНИЯ ПУСКОМ.

2. УБЕДИТЬСЯ, ЧТО ВСЕ ЛЮДИ ПОКИНУЛИ МАШИННОЕОТДЕЛЕНИЕ, ЗАЩИЩАЕМОЕ СИСТЕМОЙ СО2.

3. ПРОИЗВЕСТИ ГЕРМЕТИЗАЦИЮ МАШИННОГО ОТДЕЛЕНИЯ.

4. ОТКРЫТЬ КЛАПАН НА ОДНОМ ИЗ ПУСКОВЫХ БАЛЛОНОВ.

5. ОТКРЫТЬ КЛАПАНА No. 1 И No. 2

6. СИСТЕМА В РАБОТЕ.


3.9.10.3. СОСТАВ СУДОВОЙ СИСТЕМЫ .

Система углекислотного тушения

1 – клапан подачи СО 2 в сборный коллектор; 2 – шланг; 3 - блокирующее устройство;

4 – невозвратный клапан; 5 – клапан подачи СО 2 в охраняемое помещение


Схема системы СО 2 отдельного небольшого помещения

Каковы конструктивные особенности системы углекислотного тушения низкого давления?

Система низкого давления – расчетное количество сжиженного СО 2 хранится в резервуаре при рабочем давлении около 20 кг/см 2 , что обеспечивается поддержанием температуры СО 2 около минус 15 0 С. Резервуар обслуживается двумя автономными холодильными установками (охлаждающая система) для поддержания отрицательной температуры СО 2 в резервуаре.

Резервуар и подсоединенные к нему участки трубопроводов, заполненные жидкой углекислотой, имеют теплоизоляцию, предотвращающую повышение давления ниже настройки предохранительных клапанов в течение 24 часов поле обесточивания холодильной установки при температуре окружающего воздуха 45 0 С.

Резервуар для хранения жидкой углекислоты снабжен датчиком уровня жидкости дистанционного действия, двумя контрольными кранами уровня жидкости 100% и 95%-го расчетного наполнения. Система аварийно-предупредительной сигнализации подает в ЦПУ и каюты механиков световой и звуковой сигналы в следующих случаях:

При достижении в резервуаре максимального и минимального (не менее 18 кг/см 2) давлений;

При снижении уровня СО 2 в резервуаре до минимального допустимого 95%;

При неисправности в холодильных установках;

При пуске СО 2 .

Пуск системы производится с выносных постов от баллонов с углекислым газом аналогично предыдущей системы высокого давления. Пневмоклапаны открываются и происходит подача углекислоты в охраняемое помещение.


Как устроена система объемного химического тушения?

В некоторых источниках эти системы называют системами жидкостного тушения (СЖТ), т.к. принцип действия этих систем на подаче огнетушащей жидкости галона (фреона или хладона) в охраняемое помещение. Эти жидкости испаряются при низких температурах и превращаются в газ, который тормозит реакцию горения, т.е. являются ингиботорм горения.

Запас хладона находится в стальных резервуарах станции пожаротушения, которая располагается вне защищаемых помещений. В защищаемых (охраняемых) помещениях под подволоком находится кольцевой трубопровод с распылителями тангенциального типа. Распылители разбрызгивают жидкий хладон и он под воздействием относительно низких температур в помещении от 20 до 54 о С превращается в газ, который легко перемешивается с газовой средой в помещении, проникает в самые удаленные части помещения, т.е. способен бороться и с тлением горючих материалов.

Хладон вытесняется из резервуаров с помощью сжатого воздуха, хранящегося в отдельных баллонах за пределами станции тушения и охраняемого помещения. При открывании клапанов подачи хладона в помещение срабатывает звуковая и световая предупредительная сигнализация. Помещение необходимо обязательно покинуть!

Каково общее устройство и принцип действия стационарной системы порошкового пожаротушения?

Суда, предназначенные для перевозки сжиженных газов наливом должны быть оснащены системами тушения сухим химическим порошком для защиты грузовой палубы, а также всех зон погрузки в носовой и кормовой частях судна. Следует обеспечить возможность подачи порошка в любую часть грузовой палубы не менее чем двумя мониторами и (или) ручными пистолетами и рукавами.

Система приводится в действие инертным газом, как правило, азотом, из баллонов, находящихся поблизости от места хранения порошка.

Следует обеспечить наличие не менее двух независимых, автономных установок тушения порошком. Каждая такая установка должна иметь собственные органы управления, газ, обеспечивающий высокое давление, трубопроводы, мониторы, а также ручные пистолеты/рукава. На судах, вмещающих менее 1000 р.т, достаточно одной такой установки.

Защита зон вокруг погрузочного и разгрузочного манифольдов должна обеспечиваться монитором, как с местным, так и дистанционным управлением. Если из своего фиксированного положения монитор охватывает всю защищенную им зону, то дистанционное нацеливание ему не требуется. В задней оконечности грузовой зоны следует обеспечить как минимум один ручной рукав, пистолет или монитор. Для всех рукавов и мониторов следует предусмотреть возможность приведения их в действие на рукавной катушке или на мониторе.

Минимально допустимая подача монитора составляет 10 кг/с, а ручного рукава - 3,5 кг/с.

Каждый контейнер должен вмещать порошок в количестве, достаточном для обеспечения подачи в течение 45 сек всеми мониторами и ручными рукавами, которые к нему подключены.

Каков принцип работы с истемы аэрозольного пожаротушения?

Система аэрозольного пожаротушения относится к объемным системам пожаротушения. Тушение основано на химическом торможении реакции горения и разбавлении горючей среды пыльным аэрозолем. Аэрозоль (пыль, дым туман) состоит из взвешенных в воздухе мельчайших частиц, получаемых при горении специального разряда генератора огнетушащего аэрозоля. Аэрозоль витает в воздухе примерно 20 минут и на этом протяжении воздействует на процесс горения. Она не опасна для человека, не повышает давление в помещении (человек не получает пневмоудара), не повреждает судовое оборудование и электромеханизмы, находящиеся под напряжением.

Запал генератора огнетушащего аэрозоля (для поджога пиропатроном заряда) может быть приведен вручную или при подаче электрического сигнала. При горении заряда аэрозоль выходит через щели или окна генератора.

Данные системы пожаротушения разработаны ОАО НПО «Каскад» (Россия), являются новинками, полностью автоматизированы, не требуют больших затрат на монтаж и обслуживание, в 3 раза легче углекислотных систем.

Состав системы:

Генераторы огнетушащего аэрозоля;

Щит управления системой и сигнализацией (ЩУС);

Комплект звуковой и световой сигнализации в охраняемом помещении;

Блок управления вентиляцией и подачи топлива к двигателям МО;

Кабельные трассы (соединения).

При обнаружении признаков пожара в помещении автоматические извещатели подают сигнал на ЩУС, который выдает звуковой и световой сигнал в ЦПУ, ЦПП (мостик) и в охраняемое помещение, а затем подает электропитание на: остановку вентиляции, блокировку подачи топлива на механизмы для их остановки и в конечном итоге на приведение в действие генераторов огнетушащего аэрозоля. Применяются разные типы генераторов: СОТ-1М, СОТ-2М,

СОТ-2М-КВ, АГС-5М. Тип генератора выбирается в зависимости от размеров помещения и горящих материалов. Самый мощный СОТ-1М защищает 60 м 3 помещения. Генераторы устанавливаются в местах, не препятствующих распространению аэрозоля.

АГС-5М приводится в действие вручную и забрасывается в помещении.

ЩУС для повышения живучести запитывается от разных источников питания и от аккумуляторов. ЩУС может подсоединяться к единой компьютерной системе пожаротушения. При выходе ЩУС из строя происходит самозапуск генераторов при повышении температуры до 250 0 С.

Как действует система тушения водяным туманом?

Огнетушащие свойства воды можно улучшить за счет уменьшения размера водяных капель.

Системы тушения тонкораспыленной водой, именуемые «системами тушения водяным туманом», используют капли меньшего размера и требуют меньше воды. По сравнению со стандартными спринклерными системами, системы тушения водяным туманом обладают следующими преимуществами:

● Малый диаметр труб, облегчающий их прокладку, минимальная масса, меньшая стоимость.

●Требуются насосы меньшей производительности.

●Минимальный вторичный ущерб, сопутствующий применению воды.

● Меньше влияет на остойчивость судна.

Более высокая эффективность водной системы, действующей с использованием мелких капель, обеспечивается за счет отношения площади поверхности водной капли к ее массе.

Увеличение этого отношения означает (для данного объема воды) увеличение площади, через которую может происходить теплопередача. Проще говоря, мелкие водные капли поглощают тепло быстрее, чем крупные и поэтому оказывают более высокое охлаждающее действие на зону пожара. Однако чрезмерно мелкие капли могут не попасть в место своего назначения, поскольку не обладают массой, достаточной для преодоления порожденных огнем теплых воздушных потоков. Системы тушения водяным туманом снижают содержание кислорода в воздухе и поэтому обладают удушающим действием. Но даже в закрытых помещениях такое действие носит ограниченный характер, как вследствие его ограниченной продолжительности, так и вследствие ограниченности его зоны. При очень малом размере капель и высоком теплосодержании огня, что приводит к быстрому образованию значительных объемов пара, удушающее действие проявляется сильнее. На практике системы тушения водяным туманом обеспечивают тушение в основном за счет охлаждения.

Системы тушения водяным туманом должны быть тщательно сконструированы, должны обеспечивать равномерное покрытие защищенной зоны, а также, при использовании их для защиты определенных участков, должны быть расположены по возможности ближе к соответствующей потенциально опасной зоне. В общем, конструкция таких систем совпадает с описанной ранее конструкцией спринклерных систем (с «влажными» трубами), за исключением того, что системы тушения водяным туманом действуют при более высоком рабочем давлении, порядка 40 бар, и в них используются головки особой конструкции, создающие капли требуемого размера.

Другое преимущество системы тушения водяным туманом заключается в том, что они прекрасно защищают людей, поскольку мелкие водные капли отражают тепловое излучение и связывают дымовые газы. В результате личный состав, занятый тушением пожара и обеспечением эвакуации, может ближе подойти к очагу возгорания.

Пожар на судне - одно из самых опасных бедствий. Он при­носит гораздо большие разрушения, чем любой другой вид ава­рии. При пожаре могут испортиться грузы, выйти из строя ма­шины и судовое оборудование, он представляет угрозу для жизни людей. Особенно большой ущерб причиняют пожары на пассажир­ских, грузопассажирских судах и танкерах. На последних они могут сопровождаться взрывом нефтяных паров в грузовых тан­ках. Пожар может возникнуть из-за неисправности электропро­водки, неправильной эксплуатации электрического и теплообменного оборудования, небрежного и неосторожного обращения с ог­нем, попадания искр на горючие материалы и др.

Конструктивные противопожарные мероприятия в соответ­ствии с требованиями морского Регистра и СОЛАС - 74 предусматри­ваются в процессе проектирования судна. К ним относятся разде­ление судна огнестойкими поперечными переборками, применение негорючих материалов для отделки помещений, пропитывание деревянных изделий огнестойкими составами, предотвращение искрообразования в отсеках и помещениях, где хранятся легко­воспламеняющиеся взрывоопасные жидкости или материалы, обеспечение судна противопожарным оборудованием и инвента­рем и т. д.

Но одни предупредительные меры не могут исключить пожары на судах. Борьба с пожарами осуществляется с помощью различ­ных средств, способных локализовать пожар, остановить его рас­пространение, создать вокруг источника пожара не поддерживаю­щую горения атмосферу. В качестве таких средств используют забортную воду, водяной пар, углекислый газ, пену и специаль­ные огнегасящие жидкости, так называемые хладоны. Огнегасящие вещества подаются к очагу пожара противопожарными системами: водяными, водораспыления и орошения, паротушения, углекислотного и пенного пожаротушения, объемного химического тушения, инертных газов.

Кроме стационарных систем пожаротушения суда оснащаются аппаратами пены средней кратности, переносными пенными уста­новками, ручными и пенными углекислотными огнетушителями.

К противопожарным системам относят также системы пожарной сигнализации (ручной, полуавтоматической и автоматической), которые обеспечивают профилактические противопожарные меро­приятия.

Пожарная сигнализация. Предназначена для обнаружения очага пожара в самом начале его возникновения. Пожарная сигна­лизация особенно необходима в помещениях где почти не бывает людей (грузовые трюмы, кладовые, малярные и т. п.). В систему пожар­ной сигнализации входят устройства, приборы и оборудование, служащие для автоматической пере­дачи на пост управления судном и центральный пожарный пост (ЦПП) сигналов о

возникнове­нии пожара на судне; сигнализацию предупреждения - оповеще­ние экипажа и производственного персонала о пуске в действие одной из систем объемного пожаротушения. К судовой пожарной сигнализации также относятся устройства ручной пожарно-извещательной сигнализации, позволяющие лицу, обнаружившему пожар, немедленно сообщить об этом в ЦПП; авральная сигнали­зация (колокола громкого боя, ревуны и пр.), предназначенная для сообщения всему личному составу судна о возникновении пожара

Сигнал, поданный автоматической или ручной пожарной сигнализацией, поступает на специальный щит соответствующего поста и фиксируется на нем. Сигнал тревоги личному составу (сигнализация оповещения) может подаваться с поста вручную или автоматически. Машинные, котельные и насосные отделения, а также другие пожароопасные места должны оборудоваться автоматической пожарной сигнализацией. Датчики ручной пожарно-извещательной сигнализации устанавливают в коридорах и вестибюлях жилых, служебных и общественных помещений.

Чаще всего на судах используется предусмотренная Прави­лами Регистра сигнализация, с извещателями, реагирую­щими на температуру окружающей среды. На рис. 34 приведена принципиальная схема устройства пожарной сигнализации

Сигнальный аппарат 2 установлен в охраняемом помещении. Аккумулятор­ные батареи 1 а 10 включены в электрическую сеть. Благодаря наличию значи­тельного электрического сопротивления 4 ток проходит в основном через цепь с извещателем, поэтому в ветвях сила тока оказывается недостаточной для ра­боты пожарного гонга 6, сигнального колокола 8 и красных ламп 5 и 9. Когда сигнальный аппарат разомкнет электрическую цепь, соленоиды 5, 7 и // замы­кают контакты ветвей (соленоид 3 шунтирует сопротивление 4) и электрический ток поступает в сигнальную сеть, приводя в действие соответствующие аппараты, находящиеся в ЦПП. Каждой зажигающейся красной лампе соответствует свой номер охраняемого помещения.

Конструкции некоторых сигнальных аппаратов приведены на рис. 35. Простейший максимальный температурный извещатель (рис. 35, а) представляет собой ртутный термометр с впаян­ными платиновыми контактами. При повышении температуры до определенного значения столбик ртути, расширяясь, достигает верхнего контакта и замыкает электрическую цепь. Максималь­ный извещатель термостатического типа представлен на рис. 35,б.

В качестве чувствительного элемента используется биметаллическая пла­стинка 2, закрепленная на фарфоровом или пластмассовом основании 1. Верхний слой пластинки сделан из материала с малым коэффициентом линейного расши­рения, а нижний - с.большим. Поэтому при повышении температуры пластинка прогибается вниз. Когда температура достигнет заданного предельного значения, подвижный контакт 3 соприкоснется с неподвижным 4 и замкнет цепь. Контакт 4 выполнен в виде регулировочного винта, имеющего на диске шкалу настройки. С помощью винта можно настраивать извещатель в пределах от 303 до 343 К (от 30 до 70 ° С).

Наиболее распространенным является дифференциальный тем­пературный извещатель (рис. 35, в).

Внутренняя полость его корпуса разделена мембраной 3 на две камеры. Верхняя камера 4 сообщается с помещением, а нижняя / (с глухими стенками) соединена с ней через втулку 2 с несколькими отверстиями очень малого диа­метра. На втулке укреплен стержень 7, который упирается в подвижный контакт 6. Винт 5 служит упором, ограничивающим перемещение подвижного контакта.

При постоянной температуре воздуха контролируемого помещения давление в обеих камерах одинаково и контакт 6 замкнут с неподвижным контактом. Если же температура воздуха в помещении интенсивно повышается, воздух в кор­пусе извещателя нагревается. Из верхней камеры 4 он может свободно выходить через каналы в стенках корпуса. Выход же воздуха из камеры 1 возможен только через отверстия малого диаметра во втулке 2. Поэтому возникает разность давле­ний, под действием которой мембрана 3 прогибается вверх и стержень 7 отодви­гает контакт 6 - цепь размыкается, вследствие чего в систему сигнализации подается импульс. Если температура воздуха помещения изменяется с небольшой скоростью, воздух из камеры 1 успевает вытекать из отверстия втулки 2 и кон­такты не размыкаются.

Кроме электрической системы сигнализации на судах приме­няются противопожарные дымовые системы, основанные на контроле задымленности -

воздуха с помощью сигнального аппарата пожарного поста. В этом случае сигнал пожарной опасности подается самим воздухом, засасываемым из помещения в сигналь­ный аппарат.

Система водяного пожаротушения. Система водотушения (туше­ние огня сплошной струей воды) проста, надежна и ею обору­дуются все без исключения суда независимо от условий их эксплуа­тации и назначения. Основными элементами системы являются пожарные насосы, магистральный трубопровод с отростками, пожарные краны (рожки) и шланги (рукава) со стволами (бранд­спойтами). Помимо своего прямого назначения система водотуше­ния может обеспечивать забортной водой системы водяного оро­шения, водораспыления, водяных завес, пенотушения, сприн­клерную, балластную и др.; эжекторы осушительной и водоотлив­ной систем; трубопроводы охлаждения механизмов, приборов и устройств; трубопроводы промывки фекальных цистерн. Кроме того, система водотушения подает воду для обмывки якорных цепей и клюзов, мытья палуб и продувания кингстонных ящиков.

На спасательных и пожарных судах имеется специальная система водяного пожаротушения, независимая от" общесудовой системы.

Систему водотушения нельзя использовать для тушения горя­щих нефтепродуктов, так как плотность топлива или масла мень­ше, чем воды, и они растекаются по ее поверхности, что приво­дит к увеличению охваченной огнем площади. Водой нельзя тушить пожары лаков и красок, а также электрооборудования (вода является проводником и вызывает короткое замыкание).

Магистральный трубопровод системы выполняют линейным и кольцевым. Число и расположение пожарных рожков должны быть такими, чтобы в любую точку пожара можно было подать две струи воды от независимых пожарных рожков. Пожарный рожок представляет собой запорный клапан, имеющий с одной стороны фланец, которым он соединяется с трубопроводом, а с дру­гой стороны - быстросмыкаемую гайку для присоединения пожар­ного рукава. Свернутый в кольцо рукав со стволом хранится в стальной корзине около пожарного рожка. На пожарных кате­рах, спасательных судах и буксирах помимо рожков устанавли­вают лафетные стволы, из которых можно направлять мощную струю воды на горящее судно.

Напор в магистрали должен обеспечивать высоту струи воды не менее 12 м. В качестве механизмов системы водотушения при­меняют обычно центробежные и (реже) поршневые насосы. Подачу и напор пожарных насосов рассчитывают исходя из наиболее неблагоприятного случая работы системы, например из условия одновременного обеспечения действия пожарных рожков в коли­честве 15 % от всего числа установленных на судне, водяного орошения трапов и выходов из МО, системы водораспыления в МО, системы пенотушения. По Правилам Регистра минимальный напор должен быть у ствола 0,28-0,32 МПа; а расход воды через ствол - не менее 10 м 3 /ч.

Приемные трубопроводы пожарных насосов обычно присоеди­няют к кингстонам, причем насос должен иметь возможность принимать воду не менее чем из двух мест.

На рис. 36 приведена типовая схема системы водяного пожа­ротушения с кольцевой магистралью.

К двум центробежным насосам 9 забортная вода поступает от кингстона 15 и от другой магистрали 17 через фильтр 13 и клинкетные задвижки 12. У каждого насоса имеется байпасный трубопровод с невозвратно-запорным клапаном 11, позволяющий перекачивать воду по замкнутому контуру (работать «на себя»), когда нет расхода воды на потребителей. Напорные трубопроводы обоих насосов включены в кольцевую магистраль, от которой отходят: трубы к пожарным кла­панам 2; трубопровод 1 на обмыв якорных цепей и клюзов; ответвления - 3 к системе распыления МО, 4 к системе пенотушения, 5 на промывание цистерн сбора сточных вод, 6 к системе орошения выходов и вахт.

Система водораспыления и орошения. Распыленная вода яв­ляется одним из средств борьбы с пожаром. Над очагом пожара при мелком распылении воды создается большая поверхность испа­рения, что повышает эффективность охлаждения и увеличивает скорость процесса испарения. При этом практически вся вода испаряется и образуется обеднённая кислородом паровоздушная прослойка, отделяющая очаг пожара от окружающего воздуха. На морских судах применяются несколько разновидностей водо-распылительных систем: спринклерная, водораспыления, оро­шения и водяных завес.

Спринклерная систем а предназначена для тушения огня распыленными струями воды в каютах, кают-компаниях, салонах и служебных помещениях на пассажир­ских судах. Свое название система получила от применения в ней спринклеров - распыливающих на­садок с легкоплавким замком. Сприн­ клеры при достижении в помеще­нии соответствующей температуры автоматически раскрываются и рас­пыляют воду в радиусе 2-3 м. Трубопроводы системы всегда за­полнены водой, находящейся под невысоким давлением.

Спринклерная головка (рис. 37) состоит из корпуса 3, в который ввернуто кольцо 4, снабженное дужками 6. В центре диафрагмы 5 находится отверстие, по периметру которого напаян припой, образующий седло / стеклянного кол­пака 8, служащего клапаном. Клапан снизу поддерживается замком 9, части которого соединены легкоплавким припоем, рассчитанным на температуру плав­ления от 343 до 453 К (от 70 до 180 С) (в зависимости от температурного режима помещения), а для жилых и служебных помещений - около 333 К (60 °С). При по­вышении температуры плавится припой, замок распадается и клапан 8 откры­вается под давлением воды, подводимой к отверстию 2. Вода, падая на розетку 7, разбрызгивается.

Применяются также спринклеры, выполненные в виде стеклян­ной колбы, заполненной легкоиспаряющейся жидкостью, которая при повышении температуры закипает и разрывает колбу давле­нием образующихся паров. В систему входят трубопровод, несу­щий спринклеры; контрольно-сигнальный клапан, открывающий доступ воде к спринклерам и сигнальным устройствам; пневмо-гидравлическая цистерна с автоматически включающимся насо­сом. Устройство цистерны и ее автоматика такие же, как в системе бытового водоснабжения.

Система водораспыления (рис. 38) приме­няется для тушения пожаров в МО, насосных отделениях, анга­рах, гаражах.

Она выполняется в виде трубопроводов (нижнего 10 и верхнего 5) водорас­пыления, используемых для тушения пожара в нижней части отсека или вверху при затоплении или аварии в МО 17. На трубопроводах установлены водораспы­лители - струйные 6 и щелевые //. Вода в систему, защищенную предохрани­тельным клапаном 14, подается из пожарной магистрали / по перепускному тру­бопроводу 13. Для тушения пролившегося под настил 7 топлива открывают кла­паны 12, 15 и вода из щелевых распылителей 11 веерообразными струями накры­вает поверхность настила второго дна 8 и междудонной цистерны 9. При тушении горящего топлива, разлившегося на поверхности затопленного МО, открывают через палубную втулку 3 на верхней палубе 2 с помощью валикового привода 16 клапан 4, вода поступает в верхние водораспылители 6, из которых конусообраз­ными струями направляется вниз.

Одна из разновидностей водораспылителей показана на рис. 39. Наличие штифта в конструкции водораспылителя обе­спечивает распиливание воды до состояния водяной пыли, выхо­дящей из насадки в виде почти горизонтального веера. Диаметр выходного отверстия водораспылителя равен 3-7 мм. Напор воды при указанном типе водораспылителя составляет 0,4 МПа. На 1 м 2 площади орошаемой поверхности подается 0,2-0,3 л/с воды. Система орошения трапов и выходов предусмотрена для защиты людей при выходе из МО в случае пожара путем оро­шения всего пути выхода. Питание системы производится от пожар­ной магистрали, а также от пневмоцистерн забортной воды. Си­стемы орошения применяются также для понижения температуры в погребах, где хранятся взрывчатые и легковоспламеняющиеся вещества. В этом случае системы выполняются автономными. Система водяных завес существует на пожарных катерах для прикрытия поверхностей корпуса и надстроек судна сплошными водяными завесами. Система создает с помощью щеле­вых водораспылителей плоские водяные завесы, позволяющие катеру приближаться к горящему судну и тушить на нем пожар из лафетных стволов. Система состоит из трубопроводов со щеле­выми водораспылителями, расположенными по бортам катера. Необходимый расход воды обеспечивают пожарные насосы. Для создания водяных завес на 1 м 2 защищаемой площади подается 0,2-0,3 л/с воды.


Система паротушения. Эта система относится к системам объ­емного тушения, так как рабочее вещество заполняет весь свобод­ный объем закрытого помещения инертным для процесса горения насыщенным водяным паром с давлением не выше 0,8 МПа. Си­стема паротушения опасна для людей, поэтому не применяется в жилых и служебных помещениях. Ею оборудуются топливные цистерны, малярные, фонарные, кладовые для хранения легко­воспламеняющихся грузов, глушители главных двигателей, поме­щения нефтеперекачивающих насосов и др

Проходящие в помещениях трубо­проводы паротушения должны иметь свои разобщительные клапаны, сосре­доточенные на центральной станции паротушения, снабженные отличи-

тельными надписями и окрашенные в красный цвет. Станцию паротушения следует располагать в отапливаемых помещениях, надежно защищенных от возможных механических повреждений. Система паротушения должна обеспечить заполнение паром поло­вины объема обслуживаемых ею помещений не более чем за 15 мин. Для этого необходимы трубы и отростки соответствующих размеров. Управление системой паротушения должно быть центра­лизованным, парораспределительную коробку (коллектор) надо устанавливать в доступном для обслуживания месте.

В системе паротушения с централизованным управлением (рис. 40) паро­распределительная коробка 2 снабжена манометром и клапанами: запорным 1, предохранительным 3 и редукционным 4. От распределительной коробки пар через запорные клапаны направляется в магистраль с отростками 6, идущими в трюмы. Их количество зависит от объема охраняемого помещения. Концы отростков располагают на высоте 0,3-0,5 м от настила. По отростку 5 через патрубок для присоединения шланга в систему подводится пар от внесудового источника.

Преимущество системы паротушения состоит в простоте ее устройства и эксплуатации, а также в сравнительно невысокой стоимости изготовления. Недостатки системы заключаются в том, что ее можно применять только в закрытых помещениях, пар портит грузы и механизмы и опасен для людей.

Система углекислотного тушения . Для тушения пожара в за­крытых помещениях (грузовых трюмах, топливных цистернах, МО и насосных отделениях, помещениях электростанции, спе­циальных кладовых) можно применять углекислый газ. Сущность действия углекислотного тушения сводится к разбавлению воз­духа углекислым газом для снижения в нем содержания кислорода до такого процента, при котором горение прекращается. Так, при введении в помещение углекислого газа в количестве 28,5 % от его объема атмосфера этого помещения будет содержать 56,5 % азота и 15 % кислорода. При 8 % содержании кислорода в воз­духе прекращается даже тление.

В настоящее время для тушения пожаров применяют газооб­разную и туманообразную снежную углекислоту. Углекислота выходит из баллона без "сифона (при положении баллона вентилем вверх) в газообразном состоянии. При выпуске через сифонную трубку (или при положении баллона вентилем вниз) углекислота выходит из баллона в жидком виде и, охлаждаясь у отверстия снаружи, переходит в туманообразное состояние или принимает вид хлопьев.

Углекислый газ при температуре 273 К (0 °С) и давлении 3,5 МПа обладает способностью сжижаться с уменьшением объема в 400-450 раз по сравнению с газообразным состоянием. Углеки­слота хранится в стальных баллонах по 40 л с давлением до 5 МПа.

По Правилам Регистра при пожаре нужно заполнять 30 % объема наибольшего сухогрузного трюма и 40 % МО. По Правилам Регистра 85 % расчетного количества углекис­лого газа должно быть введено в течение не более 2 мин - в ма­шинные помещения, помещения аварийных дизель-генераторов и пожарных насосов, другие помещения, где применяются жидкое-топливо или иные воспламеняющиеся жидкости; 10 мин - в по­мещения с автотранспортом и топливом (кроме дизельного) в ба­ках, а также в помещения, где нет жидкого топлива или других воспламеняющихся жидкостей.

Различают системы углекислотного тушения высокого и низ­кого давлений. В системе высокого давления число баллонов для хранения сжиженного углекислого газа определяется в зависимости от степени наполнения (количества углекислого газа на 1 л вместимости), которая должна быть не более 0,675 кг/л при расчетном давлении баллона 12,5 МПа или не более 0,75 кг/л при расчетном давлении баллона 15 МПа и более. В системе низкого давления расчетное количество сжиженного углекислого газа должно храниться в одном резервуаре при рабочем давлении около 2 МПа и температуре около 255 К (-18 °С). Степень наполнения резервуара должна быть не более 0,9 кг/л. Резервуар должен обслуживаться двумя автоном­ными автоматизированными холодильными установками, состоя­щими из компрессора, конденсатора и охлаждающей батареи. Клапаны баллонов должны иметь конструкцию, исключающую самопроизвольное их открытие в условиях эксплуатации судна.

Заполнение баллонов и выпуск из них углекислоты осущест­вляются через выпускную головку - клапан (рис. 41), распола­гаемый в верхней части баллона. Клапан соединяется с сифонной трубкой, которая не доходит до дна баллона на 5-10 мм. Внутрен­ний диаметр трубки 12-15 мм, а диаметр проходного канала в вы­пускном клапане баллона 10 мм, что обеспечивает уменьшение площади проходного канала на 20-30 мм 2 по сравнению с пло­щадью поперечного сечения сифонной трубки. Это делается для предотвращения замерзания углекислоты при выпуске ее из бал­лона. Предохранительная мембрана из калиброванной латуни


Рис. 41. Выпускная головка углекислотного баллона с приводом

от троса или валика: а - клапан закрыт; б - клапан открыт

1-предохранительная мембрана; 2-нажимной рычаг; 3-пусковой рычаг;

4- тарелка; 5-шток; 13 - трос или валик

или оловянистой бронзы выдерживает давление 18±1 МПа и раз­рушается при давлении более 19 МПа. Соединенные с баллонами предохранительные трубопроводы и мембраны позволяют выпу­скать углекислоту в атмосферу при увеличении давления в балло­нах сверх допустимого. Это предотвращает ее произвольный выход в трубопроводы системы. Углекислота выпускается в систему через мембрану, которая прорезается перемещением вниз ножа-трубы.

Типовая углекислотная установкас од­ной станцией приведена на рис. 42.

Она состоит из группы баллонов 1, где хранится жидкая углекислота, кол­лекторов 2, 5 для сбора углекислоты, выходящей из баллонов, и трубопроводов 15 для ее подачи в помещения. Истечение углекислоты происходит через сопла (насадки) 16 из кольцевого трубопровода 17, проложенного под подволоком помещения. При истечении углекислота испаряется и превращается в инертный углекис­лый газ СО 2 , который тяжелее воздуха и поэтому оседает вниз, вытесняя кислород из атмосферы. На трубопроводах системы установлены клапаны (главный сто­порный 13, пусковые 14), обеспечивающие герметичность перекрывания трубо­провода и быстрый пуск системы в действие. Давление в системе контролируется манометром 12. Каждый баллон снабжен специальной выпускной головкой 11 (см. рис. 5.48). Включение всех выпускных головок производится дистанционным пневматическим приводом 9, при поступлении в который сжатого воздуха по трубе 10 поршень 8 перемещает тяги 6 и 4. Отработанный воздух уходит в атмо­сферу по трубе 7. Для указания начала работы системы установлен извещатель 3.

В помещении станции температура воздуха не должна превы­шать 313 К (40 °С), что объясняется большим давлением (примерно 13 МПа) углекислоты при такой температуре. Станции размещают в надстройках и рубках, имеющих непосредственный выход на открытую палубу, оборудуют вентиляцией и тепловой изоляцией.

Для тушения пожаров применяют также ручные углекислотные огнетушители ОУ-2 и ОУ-5 вместимостью 2 и 5 л.

Недостатками углекислотной системы пожаротушения яв­ляются большое количество баллонов, высокая стоимость обору­дования станции, значительные расходы на перезарядку баллонов и опасность для личного состава при несоблюдении мер предосто­рожности.

Система пенотушения. Предназначена для тушения пожара путем подачи пены на горящую поверхность либо заполнением пеной защищаемого помещения. Система применяется для туше­ния пожаров в грузовых наливных отсеках, МО, грузовых насос­ных отделениях, кладовых легковоспламеняющихся материалов и веществ, малярных, закрытых грузовых палубах паромов и трей-лерных судов для перевозки автотранспорта и подвижной техники с топливом в баках и др.

Систему пенотушения не допускается использовать для тушения пожаров в грузовых помещениях контейнеровозов, а также в поме­щениях, в которых находятся химичес­кие вещества, выде­ляющие кислород или другие окисли­тели, способствую­щие горению, напри­мер нитрат целлюло­зы; газообразные продукты или сжи­женные газы с точкой кипения ниже темпе­ратуры окружающей среды (бутан, про­пан); химические ве­щества или металлы,

вступающие в реакцию с водой. Не допускается использовать систему пенотушения для ликвидации пожаров находящегося под напряжением электрооборудования.

В качестве огнегасящего средства в системе пенотушения применяется воздушно-механическая пена низкой (10: 1), сред­ней (50: 1 и 150: 1) и высокой (1000: 1) кратности. Под крат­ностью пенообразования понимается отношение объема получен­ной пены к объему исходного пенообразователя.

Химическая пена образуется при реакции растворов кислот и щелочей в присутствии специальных веществ, придающих ей клейкость. Воздушно-механическая пена получается в результате растворения пенообразующего состава в воде и смешения раствора с атмосферным воздухом. Пена в несколько раз легче воды и нефте­продуктов и поэтому плавает на их поверхности. В отличие от других огнегасительных веществ ею можно эффективно тушить горящие нефтепродукты на поверхности моря.

Пена не опасна для людей, не электропроводна, не портит грузы и нефтепродукты, не вызывает коррозии металлов. Выпу­щенная на очаг пожара пена изолирует его от кислорода атмосфер­ного воздуха, и горение прекращается.

Химическую пену получают из пенопорошков в пеногенераторах. Пенопорошки хранят на судне в герметически закрытых металлических банках. Основным недостатком химического пено­тушения является неподготовленность пеногенераторов к немед­ленному действию, так как при возникновении пожара надо вскрыть банки с порошком, что весьма трудоемко и занимает много времени. Поэтому химическое пенотушение на современ­ных судах применяется редко. Чаще применяют воздушно-механи­ческую пену, состоящую по объему из 90 % воздуха, 9,8 % воды и 0,2 % пенообразователя (жидкость специального состава).

В последнее время на морских судах получили большое рас­пространение две разновидности систем воздушно-механического пенотушения, различающиеся способом смешения пенообразователя с водой и конструктивной разновидностью устройств, в кото­рых получается пена.

На рис. 43 показана принципиальная схема автоматической дозирующей установки с подачей пенообразователя насосом. Дозирующие устройства предназначены для получения раствора пенообразующей смеси заданной концентрации с автоматической регулировкой.

Пенообразователь поступает в цистерну 3 через палубную втулку 2 с па­лубы /. Слив пенообразователя из цистерны производится через клапан 5, пере­борочный стакан и гибкий рукав 4. Пенообразователь поступает в насос 6, за­щищенный от повышения давления предохранительным клапаном 8, клапан 10 открывает поступление пенообразователя в дозатор 12, где он смешивается с во­дой, поступающей из водопожарной системы через клапан 14. Давление воды перед дозатором измеряется манометром 13. Из дозатора раствор пенообразующей смеси поступает в магистраль системы пенотушения //. Клапан ручной регу­лировки 9 позволяет излишнее количество пенообразователя направить в ци­стерну 3 при открытом клапане 7. Концентрация раствора пенообразующей смеси автоматически регулируется клапаном 16 с приводом 15.

Устройство воздушно-пенного ствола показано на рис. 44. При прохождении через суживающееся сопло струя растворен­ного пенообразователя приобретает большую скорость, с которой она входит в дырчатый диффузор. Через отверстия диффузора подсасывается окружающий воздух, в результате чего образуется воздушная пена.

На рис. 45 показана схема системы пожаротушения пеной высокой кратности с цистерной пресной воды и дозирующим уст­ройством. Система состоит из резервуара с запасом пенообразова­теля, стационарных пеногенераторов, разобщительной арматуры. Под давлением поступающей от насоса воды пенообразователь вытесняется по трубопроводу в магистраль к пеногенераторам. Дроссельные шайбы создают различные скоростные напоры пото­ков воды и пенообразователя, за счет чего обеспечивается их смешение в определенной пропорции и получение эмульсии. В пеногенераторах при смешении эмульсии с воздухом образуется пена.

Примененные в системе пеногенераторы типа ГСП обладают высокой кратностью пенообразования (свыше 70), большой пода­чей (свыше 1000 л/с), дальностью выброса струи пены 8 м при



Рис. 44. Воздушно-пенный ствол

1 - соединительная гайка; 2 - резиновое кольцо; 3 - сопло;

4 - винт; 5 - кожух; 6 - диффузор; 7 - пенопровод

Рис. 45. Принципиальная схема системы пожаротуше­ния пеной высокой кратности

/ - цистерна с пресной водой; 2, 5, 6, 8, 9, 12, 16, 19 - про­ходные запорные клапаны; 3 - центробежный, насос; 4, 10 - нанометры; 7 - резервуар с пенообразователем; // - пено: генератор; 13 - трубопровод подачи пенообразователя; 14, 18 - дроссельные шайбы; 15 - магистраль к пеногенераторам; 17 - сливной трубопровод; 20 - пожарная магистраль

давлении перед генератором 0,6 МПа. Генераторы ГСП могут быть стационарными и переносными.

Переносной генератор показан на рис. 46.

Он состоит из распылительной головки 1 с быстросмыкаемой гайкой типа PC или РОТ, конфузора 2, корпуса 3 и выходного диффузора 4 с фланцем 5. К гайке головки присоединяется шланг, по которому к генератору подводится эмульсия. В диффузоре установлена сетка 6, обеспечивающая выпуск компактной струи пены.

Безотказность и быстродействие системы многократного пенотушения обеспе-чивают ее высокую эффективность при тушении нефтепродуктов. Благодаря этим качествам системы пенотушения получили широкое применение на сухогрузах и особенно на тан­керах.

Рис. 46. Переносной пеноге-нератор Рис. 47.Принципиальная схема систе­мы ОХТ

Система объемного химического тушения. Эти системы полу­чили распространение для тушения пожаров в МО и грузовых трюмах сухогрузных судов объемным способом, т. е. парами легко-испаряющихся жидкостей. Преимущество системы объемного химического тушения (ОХТ) по сравнению с системой углекислотного тушения состоит в том, что легкоиспаряющаяся огнегасительная жидкость хранится при низком давлении, вследствие чего возможность ее потерь от утечки значительно снижается. В качестве огнегасительной жидкости применяются состав БФ-2 - смесь бромистого этила (73 %) и фреона Ф-114-В (27 %) - или чистый Ф-114В 2 . Применение БФ-2 в судовых условиях предпоч­тительно, так как при вибрациях и повышенной температуре про­исходят утечки огнегасящей жидкости через соединения трубо­проводов.

Жидкость ОХТ по огнетушащим качествам превышает угле­кислоту: на каждый 1 м 3 объема помещения для тушения пожара нефтепродуктов требуется 0,67 кг/мин углекислоты, а состава БФ-2 - всего 0,215 кг/мин. Жидкость ОХТ хранят в цистернах и подают к месту пожара с помощью сжатого воздуха с давлением 0,5-1 МПа. Баллоны размещают на станции жидкостного туше­ния. От баллонов в каждое охраняемое помещение проводится трубопровод, который заканчивается в верхней части помещений распылительными головками. При высоте помещения более 5 м устанавливают два яруса распылителей.

На рис. 47 приведена принципиальная схема системы ОХТ.

Огнегасительная жидкость находится в баллоне 1, а сжатый воздух, необ­ходимый для работы системы, - в баллоне 2. Система снабжена манометром 9 и клапанами: запорными 4, 8, предохранительным 10, редукционным 5, в котором давление воздуха снижается до требуемого. Поступающий в баллон сжатый воз­дух вытесняет огнегасительную жидкость через сифонную трубку 11 в раздаточ­ную магистраль 6. С помощью распылителей жидкость распиливается по всему помещению. По окончании работы трубопроводы системы должны быть продуты сжатым воздухом черев трубопровод 3 и клапан 7 для удаления остатков жидкости. Помещение необходимо хорошо провентилировать.

Система инертных газов . Противопожарные системы танке­ров совершенствуются с учетом передового отечественного и зару­бежного опыта. В последние годы Международная морская орга­низация (ИМО) и морской Регистр особое внимание уделяют той группе противопожарных систем, которые обеспечивают преду­преждение пожаров или взрывов на танкерах. К ним в первую очередь можно отнести систему инертных газов для грузовых и отстойных танков и устройства для предотвращения проникно­вения пламени в танки.

Система инертных газов предназначена для активной защиты грузовых отсеков танкера от пожара и взрыва путем создания и постоянного поддержания в них инертной (невоспламеняющейся) микроатмосферы с содержанием кислорода по объему не более 8 %. В такой обедненной кислородом среде невозможно воспламенение углеводородных паров, выделяемых перевозимым

Рис. 5.55. Принципиальная схема усовершенствованной системы инертных газов танкера 1 - дымоход вспомогательных котлов; 2 - устройство очистки клапана; 3 - контактнопрямоточные аппараты охлаждения иочистки газов; 4 - каплеотделитель; 5 - подача газа в танки; 6 - прием инертных газов с берега; 7 - палубный во­ дяной затвор; 8 - кингстонный ящик; 9 - сублиматор; 10 - газодувки; И - слив за борт; 12 - насосы подачи воды к палубному затвору; 13 - прием воды от кингстонов МО; 14 - насос охлаждающей забортной воды; /5 - трубопровод от резервного насоса вспомогательных механизмов; Т - реле температуры; APT - аварийное реле температуры; РД - реле давления; ОРД - оперативное реле давления; РВД, РИД - реле верхнего и нижнего давлений; О, - дистанционный контроль кислорода; АВУ, АНУ - аварийные датчики верхнего и нижнего уровня", СВУ - сигнализатор верхнего уров­ ня; ----- инертные газы; - - - груз;---- забортная вода;--------- слив воды н дренаж; X хозяйственный п

Грузом или его остатками на внутренних поверхностях грузовых танков.

Рассмотрим систему инертных газов современного танкера типа «Победа», где в качестве защитных инертных газов исполь­зуются отрабо-тавшие дымовые газы одного из двух вспомогатель­ных котлов. При тепловых нагрузках не менее 40 % котлы яв­ляются генераторами инертных газов с низким (до 5 % по объему) содержанием кислорода и температурой в районе отбора газов, не превышающей 533 К (260 °С); по достижении номинальной тепловой нагрузки температура газа возрастает до 638 К (365 °С).

Максимальное количество отбираемых из дымохода котла отработавших газов в 1,25 раза превышает суммарную подачу установленных на танкере грузовых насосов, что соответствует 7500 м 3 /ч или 30 % от общего количества дымовых газов, выбра­сываемых в атмосферу через дымоход. С такими параметрами инертные газы поступают в систему технического кондициониро­вания и подаются в грузовые и отстойные танки.

Система работает следующим образом (рис. 48). За счет раз­режения во всасывающем участке, создаваемого работающей газодувкой, инертные газы последовательно проходят через контактно-прямоточные охладители-очистители газов первой и второй сту­пени, конструкция которых приведена на рис. 49. Инертные газы охлаждаются за счет интенсифицированного контакта с за­бортной водой, подводимой в аппарат снизу через завихритель с лопатками. При температуре забортной воды 30 °С температура инертных газов на выходе из аппарата второй ступени составляет 35 °С.

В системе предусмотрена двухступенчатая очистка газов от сажи, механических примесей и сернистых соединений. Наличие двух ступеней очистки увеличивает время активного контакта двухфазной среды (газы - вода) и тем самым способствует повы­шению эффективности этой операции. В результате из отработав­ших газов удаляется от 99,1 до 99,6 % сернистых соединений.

Охлажденные и очищенные инертные газы на выходе из актив­ной зоны аппаратов подвергаются первичной сепарации содержащейся в них воды.

Эта операция осуществляется в брызгоотбойнике с профилированными лопатками, где при движении газо­вого потока центробежные силы разделяют газоводяную смесь на фазы; при этом вода удаляется из аппаратов за борт, а инерт­ные газы поступают в каплеотделитель (рис. 50). В нем произво­дится вторичная сепарация, основанная на принципах изменения направления потока влажных газов и центробежного разделения сред в завихрителе с профилированными лопатками. Отсепарированная влага удаляется за борт через общий сливной трубо­провод, а инертные газы нагнетаются газодувкой в палубную рас­пределительную магистраль через палубный водяной затвор. Последний предотвращает попадание углеводородных паров в судо­вые помещения через проходящие транзитом трубопроводы инерт­ных газов при неработающей газодувке.

Принцип работы водяного затвора (рис. 51) основан на гид­равлическом закрытии трубопровода инертных газов при нерабо­тающей газодувке, а при ее работе - на отжатии уровня воды за отражатель для прохода инертных газов. Этим предотвращаются переток пожароопасных углеводородных паров в судовые поме­щения и унос воды из затвора в грузовые отсеки при установив­шемся режиме работы системы. Для этой цели затвор оборудован специальным поворотным устройством, состоящим из заслонки с противовесом, к которому крепится открытый конец гибкого шланга, служащего для удаления воды из водяной полости затвора и обеспечения непрерывной циркуляции в ней воды при работающей и неработающей системе инертных газов. Циркуляция воды в затворе осуществляется двумя центробежными насосами, один из которых является резервным. Вода из затвора сливается за борт через кингстон, расположенный в грузовом насосном отде­лении. Затвор снабжен смотровыми стеклами, водоуказательной колонкой, паропроводом обогрева водяной полости и средствами автоматического контроля уровня и температуры воды.

Из палубного водяного затвора через установленный за ним невозвратно-запорный клапан инертные газы поступают в палуб­ную распределительную магистраль и подаются в грузовые от­секи, на ответвлениях к которым также установлены невозвратно-запорные клапаны.

Система инертных газов работает в следующих случаях:

при первоначальном заполнении грузовых отсеков инертными газами перед приемом груза;

во время перехода танкера с грузом или балластом, при по­грузке танкера для поддержания заданного избыточного давления инертных газов от 2 до 8 кПа и периодической их подкачки в танки при падении давления ниже указанного значения;

при выгрузке нефтепродукта для замещения его инертными газами;

во время мойки танков стационарными средствами, в том числе сырой нефтью;

при вентиляции грузовых отсеков инертными газами и дега­-

зации танков наружным воздухом.

Газо- и воздухообмен в грузовых танках обусловливается режимами работы системы инертных газов (рис. 52). Для эффек­тивного осуществления этого процесса каждый грузовой танк имеет палубный ввод инертных газов, продувочную трубу и авто­номную газоотводную систему. Колонки продувочных труб и газо­отвода (рис. 53) снабжаются автоматическими газовыпускными устройствами, обеспечивающими скорость газовоздушного потока не менее 30 м/с на всех режимах работы, что исключает проникно­вение пламени в танки и загазованность палубы судна и способ­ствует улучшению условий труда членов экипажа.

Трубопровод подвода инертных газов и продувочная труба раз­несены как по длине танка, так и от ДП, чем обеспечивается эффек­тивный газообмен, способствующий ускорению создания равно­мерной низкой концентрации кислорода или близкой к атмосфер­ному воздуху по концентрации кислорода среды после дегазации. Для продувки (в случае необходимости) инертными газами грузо­вой системы между ней и системой инертных газов предусмотрена перемычка, снабженная по условиям безопасности запорными органами и воздушной головкой.

Методы тушения пожаров заключаются в принятии мер, прекращающих доступ горючего вещества в очаг пожара, изоляции очага пожара от доступа воздуха, а также охлаждения горючего вещества.

Способы и средства тушения пожара следует выбирать в зависимости от горючего материала и очага пожара.

Существуют поверхностный и объёмный способы тушения пожаров, которые основаны главным образом на изоляции очага пожара от доступа воздуха. При поверхностном способе горящую поверхность изолируют от доступа воздуха при помощи огнегасительных средств, например, воды, химической и воздушно-механической пены. При объёмном способе прекращают доступ воздуха в помещение или подают инертные газы, не поддерживающие или прекращающие горение: углекислый газ, пар, выхлопные газы двигателей внутреннего сгорания.

Очень важен правильный выбор и применение огнетушительных средств в зависимости от хар-ра пожара.

Огнетушительными средствами являются такие вещества и материалы, которые, будучи введённые в зону пожара, прекращает процесс горения. Их подразделяют в зависимости от способа пожаротушения.

На судах применяют 2 способа тушения пожара: поверхностный и объёмный. При поверхностном способе тушения пожара с помощью огнегасительных веществ горящую поверхность изолируют от доступа воздуха, в результате чего пламя угасает. При объёмном тушении доступ воздуха в помещение с очагом пожара прекращают и подают поддерживающие или прекращающие горение вещества – диоксид углерода, водяной пар, бромэтиловые жидкостные составы.

Жидкостным бромэтиловым составом гасят легковоспламеняющиеся и горючие жидкости, находящиеся под напряжением электротехнические установки, уголь, дерево.

Пеной заливают горящий бензин, керосин, нефть, мазут, масло; покрывая поверхность горящего вещества, она изолирует пламя от притока воздуха. Пеной можно тушить горящие твёрдые вещества. Применяют химические и воздушно-механические пены; последние быстро разрушаются, они легче химических и менее плотные.

Одновременное применение для тушение пожара воды и пены недопустимо, т.к. вода разрушает пену.

Водяной пар в зоне огня резко снижает содержание кислорода в воздухе. Паром нельзя гасить киноплёнку, хлопок и другие вещества, способные гореть в инертной среде, но его можно с успехом применять для тушения горящего металла и находящегося под напряжением электрооборудования. Паротушение применяется для защиты от пожара машино-котельных отделений, грузовых помещений, хранилищ топлива и смазочных масел.

Углекислота применяется для тушения горючих жидкостей, волокнистых и древесных материалов в герметизированных помещениях. Диоксид углерода тяжелее воздуха, поэтому он хорошо обволакивает горящие поверхности и проникает в труднодоступные места. Он не наносит вреда оборудованию и грузу, нетокопроводен и может поэтому применяться для тушения загоревшегося электрооборудования, находящиеся под током.

Диоксид углерода для тушения пожара подаётся с помощью судовых стационарных установок. После тушения пожара углекислотой в помещение не допускаются люди до полного проветривания.

Вода – наиболее распространённое, дешёвое и эффективное средство пожаротушения. Водой успешно можно гасить большинство твёрдых и газообразных веществ, но ни в коем случае не бензин, керосин, масло, горящие металлы, а также находящееся под напряжением электрооборудование. Для тушения развившихся наружных пожаров необходимо воду подавать в очаг пожара мощной компактной струёй. Большой эффект тушения пожаров водой в небольших судовых помещениях и внутри надстройки достигается при подаче её в распылённом или туманообразном состоянии, для чего используют стволы распылители.

Применение воды при тушении пожаров в трюмах опасно, т.к. она может значительно уменьшить запас плавучести и отрицательно повлиять на остойчивость судна. Некоторые горящие химические вещества, если их гасить водой, выделяют взрывоопасный газ. Вода применяется главным образом, как средство охлаждения.

На морских судах для борьбы с пожарами вода используется в системе водотушения, водораспыления, спринклерной системе, при использовании переносных мотопомп и ручных пожарных насосов.

Кошмы, асбестовые и парусиновые покрывала, песок, тёртый шифер или асбест применяют для ликвидации небольших очагов пожара. Применение песка весьма эффективно при тушении только что начавшегося пожара, небольших очагов пламени легковоспламеняющихся материалов и особенно нефтепродуктов. Небольшие очаги пламени можно быстро ликвидировать, набросив на них брезент или мат.

Тушение пожаров в загруженных трюмах представляет особую сложность, т.к. доступ к очагу пожара с любыми огнегасительными средствами ограничен или практически невозможен. В таких случаях производят полную герметизацию трюма, включают стационарную систему пожаротушения, предусмотренную для данного трюма.

При тушении пожара на открытых палубах и надстройках нужно подавать на очаг пожара наибольшее кол-во компактных струй воды по возможности с наветренного борта. Кроме того, нужно охлаждать находящиеся вблизи от огня конструкции, грузы и материалы. Как только будет обнаружен огонь в судовых помещениях, необходимо сразу же плотно закрыть все иллюминаторы и двери. Распылённой струёй в 1-ую очередь следует поливать места наибольшего нагрева – подволок, переборки, а также места прокладки труб отопления и кабели, через которые распространяется огонь. Со стороны соседних помещений одновременно надо охлаждать водой переборки.

Ручные огнетушители предназначены для тушения пожаров в самом начале их возникновения. Огнетушители постоянно находятся в готовности и могут быть быстро приведены в действие. Наиболее распространены пенные, углекислотные и бромистометиловые огнетушители.

=Матрос II класса (стр.166)=

Горючие материалы Огнегасительные средства
Электропроводящие неэлектропроводящие неэлектропроводящие, но ядовитые
Вода, в том числе и в распылённом виде, она же со смачивателями Химическая и воздушно-механическая пена Водяной пар, углекислый газ и инертные газы Химические жидкостные бромэтиловые составы
Древесные и волокнистые материалы Эффективны Могут быть использованы, хотя предназначены в основном для легковоспламеняющихся и горючих жидкостей Эффективны при герметизации помещений Малоэффективные для хлопка 1
Легковоспламеняющиеся жидкости с температурой вспышки ниже 65 о С, нерастворимые в воде Можно применять только в тонкораспылённом виде Эффективны Эффективны
Легковоспламеняющиеся жидкости с температурой вспышки ниже 65 о С, растворимые в воде Применять как разбавитель 2 и в тонкораспылённом виде Пена химическая из пенопорошка ПГПС 3 Эффективны
Горючие жидкости с температурой вспышки е 65 о С и выше, нерастворимые в воде Не рекомендуется применять сплошную струю, необходимы распылительные носадки 4 Эффективны Эффективны
Горючие жидкости с температурой вспышки е 65 о С и выше, растворимые в воде Применять как разбавитель, необходимы распылительные носадки 1 Эффективны Эффективны
Металлы Применять нельзя 5
Электрооборудование под напряжением Применять нельзя Эффективны

1 Возможно повторное возгорание при вскрытии помещений.

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство