Статистическая физика и термодинамика. Динамические и статистические законы. Принцип возрастания энтропии. Статистическая термодинамика Основные понятия в статистической термодинамике

Статистическая физика и термодинамика. Динамические и статистические законы. Принцип возрастания энтропии. Статистическая термодинамика Основные понятия в статистической термодинамике

23.03.2022

Определение 1

Статистическая термодинамика – обширный раздел статистической физики, который формулирует законы, связывающие все молекулярные свойства физических веществ с измеряемыми в ходе экспериментов величинами.

Рисунок 1. Статистическая термодинамика гибких молекул. Автор24 - интернет-биржа студенческих работ

Статистическое изучение материальных тел посвящено обоснованию постулатов и методов термодинамики равновесных концепций и вычислению важных функций по молекулярным постоянным. Основу данного научного направления составляют гипотезы и подтвержденные опытами предположения.

В отличие от классической механики, в статистической термодинамике изучаются только средние показания координат и внутренних импульсов, а также возможность появления новых значений. Термодинамические свойства макроскопической среды рассматриваются как общие параметры случайных характеристик или величин.

На сегодняшний день ученые различают классическую (Больцман, Максвелл), и квантовую (Дирак, Ферми, Эйнштейн) термодинамику. Основная теория статистического исследования: существует однозначная и стабильная взаимосвязь молекулярных особенностей частиц, которые составляют конкретную систему.

Определение 2

Ансамбль в термодинамике – практически бесконечное количество термодинамических концепций, которые находятся в различных, равновероятных микросостояниях.

Средние параметры физически наблюдаемого элемента за большой период времени начинает приравниваться к общему значению по ансамблю.

Основная идея статистической термодинамики

Рисунок 2. Статистическая формулировка 2 закона термодинамики. Автор24 - интернет-биржа студенческих работ

Статистическая термодинамика устанавливает и реализует взаимодействие микроскопической и макроскопической систем. В первом научном подходе, базирующемся на классической или квантовой механике, детально описываются внутренние состояния среды в виде координат и импульса каждой отдельной частицы в определенный момент времени. Микроскопическая формулировка требует решения сложных уравнений движения для множества переменных.

Макроскопический метод, используемый классической термодинамика, характеризует исключительно внешнее состояние системы и применяет для этого небольшое количество переменных:

  • температуру физического тела;
  • объем взаимодействующих элементов;
  • число элементарных частиц.

Если все вещества находятся в равновесном состоянии, то их макроскопические показатели будут постоянны, а микроскопические коэффициенты постепенно видоизменяться. Это означает, что каждому состоянию в статистической термодинамике соответствует несколько микросостояний.

Замечание 1

Основная идея изучаемого раздела физики заключается в следующем: если каждому положению физических тел соответствует много микросостояний, то каждое из них в результате вносит в общее макросостояние весомый вклад.

Из этого определения следует выделить элементарные свойства функции статистического распределения:

  • нормировка;
  • положительная определенность;
  • среднее значение функции Гамильтона.

Усреднение по существующим микросостояниям проводят с применением понятия статистического ансамбля, находящегося в любых микросостояниях, соответствующих одному макросостоянию. Смысл данной функции распределения состоит в том, что она в целом определяет статистический вес каждого состояния концепции.

Основные понятия в статистической термодинамике

Для статистического и грамотного описания макроскопических систем ученые используют данные ансамбля и фазового пространства, что позволяет решить классические и квантовые задачи методом теории вероятности. Микроканонический ансамбль Гиббса зачастую используется при исследовании изолированных систем, имеющих постоянный объем и количество одинаково заряженных частиц. Данный способ применяется для тщательного описания систем стабильного объема, которые находятся в тепловом равновесии с окружающей средой при постоянном показателе элементарных частиц. Параметры состояния большого ансамбля позволяют определить химический потенциал материальных веществ. Изобарно-изотермическая система Гиббса используется для объяснения взаимодействия тел, находящихся в тепловом и механическом равновесии в определенном пространстве при постоянном давлении.

Фазовое пространство в статистической термодинамике характеризует механико-многомерное пространство, осями которого выступают все обобщенные координаты и сопряженные им внутренние импульсы системы с постоянными степенями свободы. Для состоящей из атомов системы, показатели которой соответствуют декартовой координате, совокупность параметров и тепловой энергии будет обозначаться соответственно начальному состоянию. Действие каждой концепции изображается точкой в фазовом пространстве, а изменение макросостояния во времени - движением точки вдоль траектории конкретной линии. Для статистического описания свойств окружающей среды вводятся понятия функции распределения и фазового объема, характеризующих плотность вероятности нахождения новой точки, изображающей реальное состояние системы, а также в веществе вблизи линии с определенными координатами.

Замечание 2

В квантовой механике вместо фазового объема применяют понятие дискретного энергетического спектра системы конечного объема, так как этот процесс определяется не координатами и импульсом, а волновой функцией, которой в динамическом состоянии соответствует весь спектр квантовых состояний.

Функция распределения классической системы определят возможность реализации конкретного микросостояния в одном элементе объема фазовой среды. Вероятность нахождения частиц в бесконечно малом пространстве возможно сравнить с интегрированием элементов по координатам и импульсам системы. Состояние термодинамического равновесия следует рассматривать как предельный показатель всех веществ, где для функции распределения возникают решения уравнения движения составляющих концепцию частиц. Вид такого функционала, который одинаков для квантовой и классической системы, был впервые установлен физиком-теоретиком Дж. Гиббсом.

Вычисления статистической функции в термодинамике

Для правильного вычисления термодинамической функции необходимо применить любое физическое распределение: все элементы в системе эквивалентны друг другу и соответствуют разным внешним условиям. Микроканоническое распределение Гиббса используется главным образом в теоретических исследованиях. Для решения конкретных и более сложных задач рассматривают ансамбли, которые обладают энергией со средой и могут осуществлять обмен частицами и энергией. Данный метод очень удобен при исследовании фазового и химического равновесий.

Статистические суммы позволяют ученым точно определить энергию и термодинамические свойства системы, полученные с помощью дифференцирования показателей по соответствующим параметрам. Все эти величины приобретают статистический смысл. Так, внутренний потенциал материального тела отождествляется со средней энергией концепции, что позволяет изучать первое начало термодинамики, как основной закон сохранения энергии при нестабильном движении составляющих систему элементов. Свободная энергия напрямую связана со статистической суммой системы, а энтропия - с количеством микросостояний в конкретном макросостоянии, следовательно, с его вероятностью.

Смысл энтропии, как меры возникновения нового состояния, сохраняется в связи с произвольным параметром. В состоянии полного равновесия энтропия изолированной системы имеет максимальное значение при изначально правильно заданных внешних условиях, то есть равновесное общего состояние является вероятным результатом с максимально статистическим весом. Поэтому плавный переход из неравновесной позиции в равновесную есть процесс изменения в более реальное состояние.

В этом заключается статистический смысл закона возрастания внутренней энтропии, согласно которому параметры замкнутой системы увеличиваются. При температуре абсолютного нуля любая концепция находится в стабильном состоянии. Это научное утверждение представляет собой третье начало термодинамики. Стоит отметить, что для однозначной формулировки энтропии необходимо пользоваться только квантовым описанием, так как в классической статистике данный коэффициент определен с максимальной точностью до произвольного слагаемого.

Лекция 2.

Термодинамика, статистическая физика, информационная энтропия

1. Сведения из термодинамики и статистической физики. Функция распределения. Теорема Лиувилля. Микроканоническое распределение. Первое начало термодинамики. Адиабатические процессы. Энтропия. Статистический вес. Формула Больцмана. Второе начало термодинамики. Обратимые и необратимые процессы.

2. Информационная энтропия Шеннона. Биты, наты, триты и проч. Связь энтропии и информации.

Эта часть относится к лекции 1. Ее лучше рассматривать в разделе V (“Концепция “перепутывания” (entanglement) квантовых состояний”).

ЛЭ CNOT изображается в виде:

Сохраняем значение (ку)бита а, в то время как (ку)бит b меняется по закону XOR:

бит b (мишень = target) меняет свое состояние тогда и только тогда, когда состояние контрольного (control) бита a соответствует 1; при этом, состояние контрольного бита не меняется.

Логическая операция XOR (CNOT) иллюстрирует почему классические данные могут быть клонированы, а квантовые - нет. Заметим, что в общем случае под квантовыми данными мы будем понимать суперпозиции вида

, (1)

где и - комплексные числа или амплитуды состояний, причем, .

Согласно таблице истинности, если XOR применить к булевым данным, в которых второй бит находится в состоянии “0” (b), а первый -в состоянии “Х” (a), то первый бит не изменяется, а второй становится его копией:

U XOR (X, 0) = (X, X), где Х = “0” или “1”.

В квантовом случае, в качестве данных, обозначенных символом “Х”, нужно рассматривать суперпозицию (1):

.

Физически, данные можно закодировать, например, в поляризационном базисе |V> = 1, |H> = 0 (H,V)= (0,1):

и

Видно, что действительно имеет место копирование состояния. Теорема о запрете клонирования утверждает, что невозможно копирование произвольного квантового состояния. В рассмотренном примере копирование произошло, поскольку операция производилась в собственном базисе (|0>, |1>), т.е. в частном случае квантового состояния.

Казалось бы, что операцию XOR можно использовать и для копирования суперпозиций двух булевых состояний, таких как |45 0 > ? |V> + |H>:

Но это не так! Унитарность квантовой эволюции требует, чтобы суперпозиция входных состояний преобразовывалась в соответствующую суперпозицию выходных состояний:

(2)

Это т.н. перепутанное состояние (Ф +), в котором каждый из двух выходных кубитов не имеет определенного значения (в данном случае - поляризации). Этот пример показывает, что логические операции, выполняемые над квантовыми объектами происходят по другим правилам, нежели в классических вычислительных процессах.

Возникает следующий вопрос : Вроде бы состояние в выходной моде а опять-таки можно представить в виде суперпозиции , как и состояние в моде b . Как показать, что это не так, т.е., что вообще нет смысла говорить о состояниях моды (бита) a и моды (бита) b ?

Воспользуемся поляризационной аналогией, когда

(3).

Есть два пути. Путь 1 - длинный, но более последовательный. Надо посчитать средние значения параметров Стокса для обеих выходных мод. Средние берутся по волновой функции (2). Если все , кроме окажутся равными нулю - то это состояние неполяризованное, т.е. смешанное и суперпозиция (3) смысла не имеет. Работаем в представлении Гейзенберга, когда преобразуются операторы, а волновая функция - нет.

Итак, находим в моде a .

- общая интенсивность пучка а,

- доля вертикальной поляризации,

- доля +45 0 -ой поляризации,

- доля право-циркулярной поляризации.

Волновая функция, по которой производится усреднение, берется в виде (2):

где операторы рождения и уничтожения в модах a и b действуют по правилам:

{Вычисления сделать в разделе V (см.тетрадь). Там же рассчитать и вероятность регистрации совпадений или коррелятор вида }

Путь II - более наглядный, но менее “честный”!

Найдем зависимость интенсивности света в моде a от угла поворота поляроида, помещенного в эту моду. Это стандартный квантово-оптический способ проверки состояния (2) - интенсивность не должна зависеть от поворота. В то же время, аналогичная зависимость числа совпадений имеет вид

. Впервые такие зависимости были получены Э.Фраем (1976) и А.Аспеком (1985) и часто интерпретируется как доказательство нелокальности квантовой механики.

Итак, экспериментальная ситуация изображена на рисунке:

По определению

где - оператор уничтожения в моде а. Известно, что преобразование операторов двух ортогонально поляризованных мод x и y при прохождении света через поляроид, ориентированный под углом имеет вид:

.

(только первое, четвертое, пятое и восьмое слагаемые отличны от нуля) =

(только первое и восьмое слагаемые отличны от нуля) = - не зависит от угла?!

Физически это происходит потому, что волновая функция (2) не факторизуется и нет смысла говорить о состояниях в модах а и b по отдельности. Таким образом, нельзя утверждать, что мода а находится в суперпозиционном состоянии (3)!

Замечание. Проделанные вычисления (Путь II) вовсе не доказывают, что состояние в моде а неполяризованное. Например, при наличии в этой моде циркулярно-поляризованного света, результат получился бы таким же. Строгое доказательство - например, через параметры Стокса (в разделе V).

Заметим, что действуя таки же образом, можно доказать, что состояние в моде а до элемента CNOT - поляризованное.

Здесь усреднение нужно проводить по волновой функции исходного состояния (3). Результат получается таким:

т.е. максимум отсчетов достигается при = 45 0 .

Информация и энтропия.

Не вводя пока “операционального” термина “информация” будем рассуждать, пользуясь “бытовым” языком. Т.е. информация - это некое знание об объекте.

За то, что понятия информация и энтропия тесно связаны, говорит следующий пример. Рассмотрим идеальный газ, находящийся в термодинамическом равновесии. Газ состоит из огромного количества молекул, которые двигаются в объеме V. Параметрами состояния являются давление, температура. Число состояний такой системы огромно. Энтропия газа при ТД равновесии максимальна и как следует из формулы Больцмана, определяется числом микросостояний системы. При этом мы ничего не знаем о том, какое конкретно состояние имеет система в данный момент времени у нас нет - информация минимальна. Допустим, что каким-то образом нам удалось с помощью очень быстрого прибора “подсмотреть состояние системы в данный момент времени. Значит мы получили о ней какую-то информацию. Можно даже представить, что мы сфотографировали не только координаты молекул, но и их скорости (например, сделав несколько фотографий одну за другой). При этом в каждые моменты времени, когда нам доступна информация о состоянии системы, энтропия стремится к нулю, т.к. система находится лишь в каком-то одном определенном состоянии из всего огромного их многообразия и это состояние сильно неравновесное. Этот пример показывает, что действительно информация и энтропия как-то связаны, причем уже вырисовывается характер связи: чем больше информация, тем меньше энтропия.

Сведения из термодинамики и статистической физики.

Физические величины, характеризующие макроскопические состояния тел (много молекул), называют термодинамическими (в том числе, энергия, объем). Существуют, однако, и величины, появляющиеся как результат действия чисто статистических закономерностей и имеющие смысл в применении только к макроскопическим системам. Такова, например, энтропия и температура.

Классическая статистика

*Теорема Лиувилля . Функция распределения постоянна вдоль фазовых траекторий подсистемы (речь идет о квазизамкнутых подсистемах, поэтому теорема справедлива только для не очень больших промежутков времени, в течение которых подсистема ведет себя как замкнутая).

Здесь - - функция распределения или плотность вероятности. Она вводится через вероятность w обнаружить подсистему в элементе фазового пространства в данный момент времени: dw = ( p 1 ,..., p s , q 1 ,..., q s ) dpdq , причем

Нахождение статистического распределения для любой подсистемы и является основной задачей статистики. Если статистическое распределение известно, то можно вычислить вероятности различных значений любых физических величин, зависящих от состояний этой подсистемы (т.е. от значений координат и импульсов):

.

*Микроканоническое распределение.

Распределение для совокупности двух подсистем (они полагаются замкнутыми, т.е. слабовзаимодействующими) равно. Поэтому - логарифм функции распределения - величина аддитивная . Из теоремы Лиувилля следует, что функция распределения должна выражаться через такие комбинации переменных p и q, которые при движении подсистемы, как замкнутой, должны оставаться постоянными (такие величины называются интегралами движения). Значит сама функция распределения является интегралом движения. Более того, ее логарифм - тоже интеграл движения, причем аддитивный . Всего в механике существует семь интегралов движения - энергия, три компоненты импульса и три компоненты момента импульса -(для подсистемы а: Е а (p , q ), P а (p , q ), М а (p , q )). Единственная аддитивная комбинация этих величин есть

причем коэффициенты (их семь штук)- должны оставаться одинаковыми для всех подсистем данной замкнутой системы, а выбирается из условий нормировки (4).

Чтобы выполнялось условие нормировки (4), необходимо, чтобы функция (p , q ) обращалась в точках Е 0 , Р 0 , М 0 в бесконечность. Более точная формулировка дает выражение

Микроканоническое распределение.

Наличие - функций обеспечивает обращение в нуль для всех точек фазового пространства, в которых хотя бы одна из величин Е, Р, М не равна своему заданному (среднему) значению Е 0 , Р 0 , М 0 .

От шести интегралов P и М можно избавится, заключив систему в твердый ящик, в котором она покоится.

.

Физическая энтропия

Опять используем понятие идеального газа.

Пусть одноатомный идеальный газ с плотностью n и температурой Т занимает объем V . Будем измерять температуру в энергетических единицах - не будет фигурировать постоянная Больцмана. Каждый атом газа имеет среднюю кинетическую энергию теплового движения, равную 3Т/2 . Поэтому полная тепловая энергия газа равна

Известно, что давление газа равно p = nT . Если газ может обмениваться теплом с внешней средой, то закон сохранения энергии газа выглядит так:

. (5)

Таким образом, изменение внутренней энергии газа может происходить как за счет совершаемой им работы, так и вследствие поступления некоторого количества тепла dQ извне. Это уравнение выражает первое начало термодинамики, т.е. закон сохранения энергии. При этом предполагается, что газ находится в равновесии, т.е. p = const по всему объему.

Если же допустить, что газ находится и в состоянии ТД равновесия, Т = const , то соотношение (5) можно рассматривать как элементарный процесс вариации параметров газа при их очень медленном изменении, когда ТД равновесие не нарушается. Именно для таких процессов и вводится понятие энтропии S с помощью соотношения

Таким образом, утверждается, что у равновесного газа кроме внутренней энергии есть еще одна внутренняя характеристика, связанная с тепловым движением атомов. Согласно (5, 6) при постоянном объеме dV = 0, изменение энергии пропорционально изменению температуры, а в общем случае

Так как где N = nV = const есть полное количество атомов газа, то последнее соотношение можно записать в виде

После интегрирования получаем

Выражение в квадратных скобках представляет собой энтропию, приходящуюся на одну частицу.

Таким образом, если и температура и объем изменяются таким образом, что VT 3/2 остается постоянным, то и энтропия S не изменяется. Согласно (6) это означает, что газ не обменивается теплом с внешней средой, т.е. газ отделен от нее теплоизолирующими стенками. Такой процесс называется адиабатическим .

Поскольку

где = 5/3 называется показателем адиабаты. Таким образом при адиабатическом процессе температура и давление изменяются с плотностью по закону

Формула Больцмана

Как следует из теоремы Лиувилля, функция распределения? имеет резкий максимум при Е = Е 0 (среднее значение) и отлична от нуля только в окрестности этой точки. Если ввести ширину Е кривой (Е), определив ее как ширину прямоугольника, высота которого равна значению функции (Е) в точке максимума, а площадь равна единице (при надлежащей нормировке). Можно перейти от интервала значений энергии к числу состояний Г с энергиями, принадлежащими Е (это, фактически, средняя флуктуация энергии системы). Тогда величина Г характеризует степень размазанности макроскопического состояния системы по ее микроскопическим состояниям. Другими словами, для классических систем Г - это размер той области фазового пространства, в которой данная подсистема проводит почти все время В квазиклассической теории устанавливается соответствие между объемом области фазового пространства и приходящимся на него числом квантовых состояний.. А именно, на каждое квантовое состояние в фазовом пространстве приходится клетка с объемом , где s - число степеней свободы

Величину Г называют статистическим весом макроскопического состояния, его можно записать в виде:

Логарифм статистического веса называется энтропией:

где - статистический вес = число микросостояний, охватываемых рассматриваемым макросостоянием системы.

.

В квантовой статистике показывается, что = 1. Тогда

Где под понимается статистическая матрица (плотности). Ввиду линейности логарифма функции распределения по энергии (*) , где усреднение проводится по функции распределения .

Поскольку число состояний во всяком случае не меньше единицы, то энтропия не может быть отрицательной. S определяет густоту уровней энергетического спектра макроскопической системы. Ввиду аддитивности энтропии можно сказать, что средние расстояния между уровнями макроскопического тела экспоненциально убывают с увеличением его размеров (т.е. числа частиц в нем). Наибольшее значение энтропии соответствует полному статистическому равновесию.

Характеризуя каждое макроскопическое состояние системы распределением энергии между различными подсистемами, можно сказать, что ряд последовательно проходимых системой состояний соответствует все более вероятному распределению энергии. Это возрастание вероятности велико в силу его экспоненциального характера e S - в экспоненте стоит аддитивная величина - энтропия. Т.о. процессы, протекающие в неравновесной замкнутой системе, идут таким образом, что система непрерывно переходит из состояний с меньшей энтропией в состояния с большей энтропией. В итоге энтропия достигает наибольшего возможного значения, соответствующего полному статистическому равновесию.

Таким образом, если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы. Это - второй закон термодинамики (Р.Клаузиус, 1865г.). Его статистическое обоснование дано Л.Больцманом в 1870г. Другое определение:

если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает. Она увеличивается или в предельном случае остается постоянной. Соответственно этим двум возможностям все происходящие с макроскопическими телами процессы принято делить на необратимые и обратимые . Необратимые - те процессы, которые сопровождаются увеличением энтропии всей замкнутой системы (процессы, которые бы являлись их повторениями в обратном порядке, не могут происходить, так как при этом энтропия должна была бы уменьшаться). Заметим, что уменьшение энтропии может быть вызвано флуктуациями. Обратимыми называются процессы, при которых энтропия замкнутой системы остается постоянной и которые, следовательно, могут проходить и в обратном направлении. Строго обратимый процесс представляет собой идеальный предельный случай.

При адиабатических процессах система не поглощает и не отдает тепло ? Q = 0 .

Замечание: (существенное). Утверждение о том, что замкнутая система должна в течение достаточно длительного времени (большего, чем время релаксации) перейти в состояние равновесия относится лишь к системе, находящейся в стационарных внешних условиях. Пример - поведение доступной нашему наблюдению большой области Вселенной (свойства природы не имеют ничего общего со свойствами равновесной системы).

Информация.

Рассмотрим ленту, разбитую на ячейки - классический регистр. Если в каждой ячейке может быть помещен только один из двух символов, то говорят, что в ячейке содержится бит информации. Очевидно (см. лекцию 1), что в регистре, содержащем N ячеек содержится N бит информации и в нем можно записать 2 N сообщений. Итак, информационная энтропия измеряется в битах:

(7)

Здесь Q N = 2 N - полное число различных сообщений. Из (7) ясно, что информационная энтропия просто равна минимальному числу двоичных ячеек, с помощью которых можно записать некую информацию.

Определение (7) можно переписать по-другому. Пусть у нас имеется множество Q N различных сообщений. Найдем вероятность того, что необходимое нам сообщение совпадет со случайно выбранным из общего числа Q N различных сообщений. Она равна, очевидно, P N = 1/ Q N . Тогда определение (7) запишется как:

(8)

Чем больше число ячеек N , тем меньше вероятность P N и тем больше информационная энтропия H B , содержащейся в данном конкретном сообщении.

Пример . Число букв алфавита равно 32 (без буквы ё). Число 32 есть пятая степень двойки 32 = 2 5 . Чтобы каждой букве сопоставить определенную комбинацию двоичных чисел необходимо иметь 5 ячеек. Добавив к строчным буквам заглавные, мы удваиваем число символов, которые хотим закодировать - их станет 64 = 2 6 - т.е. добавляется лишний бит информации H B = 6. Здесь H B - объем информации, приходящийся на одну букву (строчную или заглавную). Однако такой прямой подсчет информационной энтропии не совсем точен, поскольку в алфавите есть буквы, которые встречаются реже или чаще. Тем буквам, которые встречаются реже, можно отдать большее количество ячеек, а на часто встречающихся буквах - сэкономить и отдать им те состояния регистра, которые занимают меньшее количество ячеек. Точное определение информационной энтропии было дано Шенноном:

(9)

Формально вывод этого соотношения можно обосновать следующим образом.

Мы показали выше, что

из-за аддитивности логарифма функции распределения и его линейности по энергии.

Пусть p - функция распределения какой-нибудь дискретной величины f i (например, буквы “о” в этом тексте). Если с помощью функции p построить функцию распределения вероятностей различных значений величины f = f 1 , f 2 ,... f N , то эта функция будет иметь максимум при , где и (нормировка). Тогда p()= 1 и (вообще говоря, это справедливо для класса функций, удовлетворяющих условию (*))

Суммирование ведется по всем символам (буквам алфавита), а p i означает вероятность появления символа с номером i . Как видно это выражение охватывает как часто используемые буквы, так и буквы, вероятность появления которых в данном сообщении мала.

Поскольку в выражении (9) используется натуральный логарифм, соответствующую единицу информации называют “нат”.

Выражение (9) можно переписать в виде

где скобки означают обычное классическое усреднение с помощью функции распределения p i .

Замечание . В следующих лекциях будет показано, что для квантовых состояний

где - матрица плотности. Формально выражения (10) и (11) совпадают, однако есть и существенная разница. Классическое усреднение производится по ортогональным (собственным) состояниям системы, в то время как для квантового случая состояния могут быть и неортогональные (суперпозиции). Поэтому всегда H quant H class !

В формулах (8) и (9) используются логарифмы при разных основаниях. В (8) - по основанию 2, а в (9) - по основанию е. Соответствующие этим формулам информационные энтропии можно легко выразить друг через друга. Воспользуемся соотношением, в котором M - произвольное число

.

Тогда, учтя, что а получаем

- число бит почти в полтора раза больше числа нат!

Рассуждая аналогично, можно получить соотношение между энтропиями, выраженными в тритах и битах:

В компьютерной технике пользуются информацией по двоичному основанию (в битах). Для рассуждений в физике удобнее пользоваться информацией по Шеннону (в натах), которой можно характеризовать любую дискретную информацию. Всегда можно найти число соответствующих бит.

СВЯЗЬ ЭНТРОПИИ И ИНФОРМАЦИИ. Демон Максвелла

Этот парадокс впервые был рассмотрен Максвеллом в 1871г (см. рис.1). Пусть некая “сверхъестественная” сила открывает и закрывает заслонку в сосуде, перегороженном на две части и содержащем газ. Заслонка управляется по правилу: она открывается, если быстрые молекулы, двигающиеся справа налево, соприкасаются с ней или, если медленные молекулы ударяют в нее, двигаясь в противоположном направлении. Таким образом демон вводит разницу температур между двумя объемами без совершения работы, что нарушает второе начало термодинамики.

Демон Максвелла. Демон устанавливает разность давления открывая заслонку, когда число молекул газа, ударивших в нее слева превышает число ударов справа. Это можно сделать полностью обратимым способом до тех пор, пока в памяти демона сохраняются случайные результаты его наблюдений за молекулами. Поэтому память демона (или его голова) нагревается. Необратимый шаг состоит не в том, что накапливается информация, а в том, что информация теряется, когда демон потом очищает память. Сверху: заполнение памяти демона битами информации – это случайный процесс. По правую сторону от пунктира – незаполненная область памяти (все ячейки находятся в состоянии 0, слева – случайные биты). Внизу – демон.

Был предпринят целый ряд попыток разрешить парадокс или изгнать демона. Например, предполагалось, что демон не может извлечь информацию без совершения работы или без возмущения (т.е. нагрева) газа – но, оказалось, что это не так! Другие попытки сводились к тому, что второе начало может нарушаться под действием неких «разумных» или “мыслящих” сил (существ). В 1929г. Лео Сцилард существенно «продвинул» решение проблемы, сведя ее к минимальной формулировке и выделив существенные компоненты. Главное, что нужно сделать Демону это установить находится ли единичная молекула справа или слева от скользящей заслонки, что позволило бы извлекать тепло. Такое устройство было названо двигателем Сциларда. Однако Сцилард не разрешил парадокса, поскольку его анализ не учитывал, как измерение, посредством которого демон узнает находится ли молекула справа или слева, влияет на увеличение энтропии (см рисунок Szilard_demon.pdf). Двигатель работает по шести-шагвому циклу. Двигатель представляет собой цилиндр, в торцах которого помещены поршни. В середину вставляется заслонка. Работа по вдвиганию перегородки может быть сведена к нулю (это показал Сциллард). Также имеется устройство памяти (УП). Оно может находиться в одном из трех состояний. «Пусто», «Молекула справа» и «Молекула слева». Исходное состояние: УП= «Пусто», поршни – отжаты, перегородка – выдвинута, у молекулы есть средняя скорость, которая определяется температурой термостата (слайд 1).

1. перегородка вставляется, оставляя молекулу справа или слева (слайд 2).

2. Устройство памяти определяет, где находится молекула и переходит в состояние «справа» или «слева».

3. Сжатие. В зависимости от состояния УП происходит вдвигание поршня со стороны, где нет молекулы. Этот этап не требует совершение работы. Поскольку сжимается вакуум (слайд 3).

4. Перегородка удаляется. Молекула начинает оказывать давление на поршень (слайд 4).

5. Рабочий ход. Молекула ударяется в поршень, заставляя его двигаться в обратном направлении. Энергия молекулы передается поршню. При движении поршня ее средняя скорость должна уменьшаться. Однако этого не происходит, поскольку стенки сосуда находятся при постоянной температуре. Поэтому тепло от термостата передается молекуле, поддерживая ее скорость постоянной. Таким образом во время рабочего хода происходит преобразование тепловой энергии, поступаемой из термостата в механическую работу, совершаемую поршнем (слайд 6).

6. Очищение УП, возвращая ее в состояние «Пусто» (слайд 7). Цикл завершен (слайд 8 = слайд 1).

Удивительно, что этот парадокс не был разрешен до 80-ых годов 20-го века. За это время было установлено, что в принципе, любой процесс можно сделать обратимым образом, т.е. без «оплаты» энтропией. Наконец, Беннетт в 1982г. установил окончательную связь между этим утверждением и парадоксом Максвелла. Он предложил, что демон на самом деле может узнать, где находится молекула в двигателе Сциларда без совершения работы или увеличения энтропии окружения (термостата) и таким образом, совершить полезную работу за один цикл работы двигателя. Однако, информация о положении молекулы должна оставаться в памяти демона (рси.1). По мере выполнения большего числа циклов все больше и больше информации накапливается в памяти. Для завершения термодинамического цикла демон должен стереть информацию, запасенную в памяти. Именно эту операцию стирания информации приходится классифицировать как процесс увеличения энтропии окружения, как требуется вторым началом. На этом завершается принципиально физическая часть устройства демона Максвелла.

Некоторое развитие этих идей получило в работах Д.Д.Кадомцева.

Рассмотрим идеальный газ, состоящий только из одной частицы (Кадомцев, «динамика и информация»). Это не абсурд. Если одна частица заключена в сосуде объемом V со стенками, находящимися при температуре Т, то рано или поздно она придет в равновесие с этими стенками. В каждый момент времени она находится во вполне определенной точке пространства и с вполне определенной скоростью. Будем проводить все процессы настолько медленно, что частица успеет в среднем заполнить весь объем и многократно поменять величину и направление скорости при неупругих столкновениях со стенками сосуда. Таким образом, частица оказывает на стенки среднее давление, имеет температуру Т и ее распределение по скоростям является максвелловским с температурой Т . Эту систему из одной частицы можно адиабатически сжимать, можно менять ее температуру, давая ей возможность прийти в равновесие со стенками сосуда.

Среднее давление на стенку при N = 1 , равно p = T/ V , а средняя плотность n = 1/ V . Рассмотрим случай изотермического процесса, когда Т = const . Из первого начала при Т = const . и p = T/ V получаем

, поскольку

Отсюда находим, что изменение энтропии не зависит от температуры, так что

Здесь введена постоянная интегрирования: “размер частицы”<

Работа при изотермическом процессе

работа определяется разностью энтропий.

Пусть у нас имеются идеальные перегородки, которыми можно поделить сосуд на части без затраты энергии. Разделим наш сосуд на две равные части с объемом V /2 каждая. При этом частица будет находиться в одной из половин - но мы не знаем в какой. Допустим, что у нас есть прибор, который позволяет определить в какой из частей находится частица, например, прецизионные весы. Тогда из симметричного распределения вероятностей 50% на 50% нахождения в двух половинках мы получаем 100% вероятности для одной из половин - происходит “коллапс” распределения вероятностей. Соответственно, новая энтропия окажется меньше исходной энтропии на величину

За счет уменьшения энтропии можно совершить работу. Для этого достаточно двигать перегородку в сторону пустого объема вплоть до его исчезновения. Работа будет равна Если бы во внешнем мире ничего не менялось, то повторяя эти циклы, можно построить вечный двигатель второго рода. Это и есть демон Максвелла в варианте Сцилларда. Но второй закон термодинамики запрещает получение работы только за счет тепла. Значит во внешнем мире должно что-то происходить. Что же это? Обнаружение частицы в одной из половин меняет информацию о частице - из двух возможных половинок указывается только одна, в которой находится частица. Это знание соответствует одному биту информации. Процесс измерения уменьшает энтропию частицы (перевод в неравновесное состояние) и ровно настолько же увеличивает информацию о системе (частице). Если совершать повторные деления пополам полученной ранее половинки, четвертушки, восьмушки и т.д., то энтропия будет последовательно уменьшаться, а информация - увеличиваться! Другими словами

Чем больше известно о физической системе, тем меньше ее энтропия. Если о системе известно все - это значит, что мы перевели ее в сильнонеравновесное состояние, когда ее параметры максимально удалены от равновесных значений. Если в нашей модели частицу удастся поместить в элементарную ячейку объема V 0 , то при этом S = 0 , а информация достигает своего максимального значения поскольку вероятность p min найти частицу в данной ячейке равна V 0 / V . Если в последующие моменты времени частица начнет заполнять больший объем, то информация будет утрачиваться, а энтропия - расти. Подчеркнем, что за информацию нужно платить (по второму началу) увеличением энтропии S e внешней системы, причем Действительно, если бы за один бит информации прибор (внешняя система) увеличивал свою энтропию на величину меньшую одного бита, то мы могли бы обратить тепловую машину. А именно, расширяя объем, занятый частицей, мы бы увеличивали ее энтропию на величину ln 2 , получая работу Tln 2 , а суммарная энтропия системы частица плюс прибор уменьшилась бы. Но это невозможно по второму началу. Формально, , поэтому уменьшение энтропии системы (частицы) сопровождается увеличением энтропии прибора .

Итак, информационная энтропия - это мера недостатка (или степень неопределенности) информации о действительном состоянии физической системы.

Информационная энтропия Шеннона:

, где (это относится к двухуровневым системам, типа бит: “0” и “1”. Если размерность равна n , то H = log n . Так, для n = 3, Н = log 3 причем, = 3.)

Количество информации I (или просто информация) о состоянии классической системы, получаемое в результате измерений внешним прибором, связанным с рассматриваемой системой некоторым каналом связи, определяется как разность информационной энтропии, соответствующей начальной неопределенности состояния системы H 0 , и информационной энтропии конечного состояния системы после измерения H . Таким образом,

I + H = H 0 = const .

В идеальном случае, когда отсутствуют шумы и помехи, создаваемые внешними источниками в канале связи, конечное распределение вероятностей после измерения сводится к одному определенному значению p n = 1, т.е. H = 0, а максимальное значение полученной при измерении информации будет определяться: I max = H 0 . Таким образом, информационная энтропия Шеннона системы имеет смысл максимальной информации, заключенной в системе; она может быть определена в идеальных условиях измерения состояния системы в отсутствие шумов и помех, когда энтропия конечного состояния равна нулю:

Рассмотрим классический логический элемент, который может находиться в одном из двух равновероятных логических состояний “0” и “1”. Такой элемент вместе с окружающей средой - термостатом и генерируемым внешним теплоизолированным объектом сигналом единую неравновесную замкнутую систему. Переход элемента в одно из состояний, например, в состояние “0”, соответствует уменьшению стат. веса его состояния по сравнению с начальным состоянием в 2 раза (для трехуровневых систем - в 3 раза). Найдем уменьшение информационной энтропии Шеннона, которое соответствует увеличению количества информации об элементе на единицу, которая называется битом :

Следовательно, информационная энтропия определяет число битов, которое требуется для кодирования информации в рассматриваемой системе или сообщении.

ЛИТЕРАТУРА

1. Д.Ландау, И.Лифшиц. Статистическая физика. Часть 1. Наука, М 1976.

2. М.А.Леонтович. Введение в термодинамику. Статистическая физика. Москва, Наука, 1983. - 416с.

3. Б.Б.Кадомцев. Динамика и информация. УФН, 164, №5, 449 (1994).

СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА , раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии статистическая термодинамика позволяет вычислять термодинамические потенциалы , записывать уравнения состояния , условия фазовых и хим. равновесий . Неравновесная статистическая термодинамика дает обоснование соотношений (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. Статистическая термодинамика устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы статистической термодинамики используются во всех направлениях совр. теоретич. химии .

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния ; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией E с окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N (параметры состояния V, Т, N ). Большой канонич. ансамбль Гиббса используется для описания открытых систем , находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V). Параметры состояния такой системы-V, Т и m -химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P (параметры состояния Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты q i и сопряженные им импульсы p i (i =1,2,..., М) системы с М степенями свободы. Для системы, состоящей из N атомов , q i и p i соответствуют декартовой координатеи компоненте импульса (a = х, у, z) нек-рого атома j и М = 3N . Совокупность координат и импульсов обозначаются q и p соответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q), к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т.к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний .

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микро состояния (р, q) в элементе объема dГ фазового пространства. Вероятность пребывания N частиц в бесконечно малом объеме фазового пространства равна:

где dГ N - элемент фазового объема системы в единицах h 3N , h-постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки т f(p, q)dГ N = 1, т.к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , N нахождения системы из N частиц в квантовом состоянии , задаваемом набором квантовых чисел i , с энергией E i,N при условии нормировки

Среднее значение в момент времени т (т.е. по бесконечно малому интервалу времени от т до т + dт)любой физ. величины А(р, q), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т.ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от - , до +, . Состояние термодинамич. равновесия системы следует рассматривать как предел т: , . Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Е равновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q) = Ad ,

где d -дельта-ф-ция Дирака, Н(р,q)-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная А определяется из условия нормировки ф-ции f(p, q). Для квантовых систем при точности задания квантового состояния , равной величине D E, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w (E k) = -1 , если ЕE k E + D E, и w (E k) = 0, если E k < Е и E k > E + D E. Величина g(E, N, V)-т. наз. статистич. вес , равный числу квантовых состояний в энергетич. слое D E. Важное соотношение статистической термодинамики -связь энтропии системы со статистич. весом :

S(E, N, V) = klng(E, N, V), где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех N частиц или значениями E i,N , имеет вид: f(p, q) = exp {/kT}; w i,N = exp[(F - E i,N)/kT], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

F = -kTlnZ N ,

где Z N -статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N или f(p, q):


Z N = т exp[-H(р, q)/kT]dpdq/(N!h 3N)

(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q) и статистич. сумма X , определяемая из условия нормировки, имеют вид:

где W -термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N ). В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий . Статистич. суммы Z N и Q позволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT 2 (9 lnZ N /9 T) V , энтальпию H = RT 2 (9 lnQ/9 T) P , энтропию S = RlnZ N + RT(9 lnZ N /9 T) V = = R ln Q + RT(9 ln Q/9 T) P , теплоемкость при постоянном объеме С V = 2RT(9 lnZ N /9 T) V + RT 2 (9 2 lnZ N /9 T 2) V , теплоемкость при постоянном давлении С Р = 2RT (9 lnZ N /9 T) P + + RT 2 (9 2 lnZ N /9 T 2) P и т.д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний g в данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия энтропия изолир. системы имеет максимально возможное значение при заданных внеш. условиях (Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии , согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой третье начало термодинамики (см. Тепловая теорема). Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т.к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов , если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q) для N частиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловлен ных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином .

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах ђ = h/2p . Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах , металлах и полупроводниках , атомные ядра с нечетным атомным номером , атомы с нечетной разностью атомного номера и числа электронов , квазичастицы (напр., электроны и дырки в твердых телах) и т.д. Данная статистика была предложена Э.Ферми в 1926; в том же году П.Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т.е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип). Среднее число частиц n i идеального газа фермионов, находящихся в состоянии с энергией E i , определяется ф-цией распределения Ферми-Дирака:

n i ={1+exp[(E i -m )/kT]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, ђ, 2ђ, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа , рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т.д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках . Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т.е. в одном состоянии может находиться любое число частиц. Среднее число частиц n i идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

n i ={exp[(E i -m )/kT]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей , нельзя выбрать объем меньший, чем h 3 . Среднее число частиц n i идеального газа , находящихся в состоянии с энергией E i , описывается ф-цией распределения Больцмана:

n i =exp[(m -E i)/kT].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам p и координатам r частиц идеального газа имеет вид: f 1 (p,r) = A ехр{ - [р 2 /2m + U(r)]/kT}. Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная А определяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r (n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение моле кул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках , а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от u i до u i + du i (i = x, у, z), определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов , но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе . Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

Сумма по состояниям молекулы . Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:

где Е i - энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), g i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов , атомов и групп атомов в молекуле , а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост ·Q вн, Q пост = l (V/N),

где l = (2p mkТ/h 2) 3/2 . Для атомов Q вн представляет собой сумму по электронным и ядерным состояниям атома ; для молекул Q вн - сумма по электронным, ядерным, колебат. и вращат. состояниям. В области т-р от 10 до 10 3 К обычно используют приближенное описание, в к-ром каждый из указанных типов движения рассматривается независимо: Q вн = Q эл ·Q яд ·Q вращ ·Q кол /g , где g - число симметрии , равное числу тождество. конфигураций, возникающих при вращении молекулы , состоящей из одинаковых атомов или групп атомов .

Сумма по состояниям электронного движения Q эл равна статистич. весу Р т осн. электронного состояния молекулы . Во мн. случаях осн. уровень невырожден и отделен от ближайшего возбужденного уровня значит. энергией: (Р т = 1). Однако в ряде случаев, напр. для молекулы О 2 , Р т = з, в осн. состоянии момент кол-ва движения молекулы отличен от нуля и имеет место вырождение энергетических уровней , а энергии возбужденных состояний м. б. достаточно низкими. Сумма по состояниям Q яд, обусловленная вырождением ядерных спинов , равна:

где s i -спин ядра атома i, произведение беретсяпо всем атомам молекулы . Сумма по состояниям колебат. движения молекулы где v i -частоты нор мальных колебаний, n-число атомов в молекуле . Сумму по состояниям вращат. движений многоатомной молекулы с большими моментами инерции можно рассматривать классически [высокотемпературное приближение, T/q i 1, где q i = h 2 /8p 2 kI i (i = x, у, z), I t -главный момент инерции вращения вокруг оси i]: Q вр = (p T 3 /q x q y q z) 1/2 . Для линейных молекул с моментом инерции I статистич. сумма Q вр = T/q , где q = h 2 /8p 2 *kI.

При расчетах при т-рах выше 10 3 К необходимо учитывать ангармонизм колебаний атомов , эффекты взаимод. колебат. и вращат. степеней свободы (см. Нежесткие молекулы), а также мультиплетности электронных состояний, заселенности возбужденных уровней и т. д. При низких т-рах (ниже 10 К) необходимо учитывать квантовые эффекты (особенно для двухатомных молекул). Так, вращат. движение гетеро-ядерной молекулы АВ описывается по ф-ле:

l-номервращат. состояния, а для гомоядерных молекул А 2 (особенно для молекул водорода Н 2 , дейтерия D 2 , трития Т 2) ядерные и вращат. степени свободы взаимод. друг с другом: Q яд. вращ . Q яд ·Q вращ.

Знание суммы по состояниям молекулы позволяет рассчитать термодинамич. св-ва идеального газа и смеси идеальных газов , в т.ч. константы хим. равновесия , равновесную степень ионизации и т.п. Важное значение в теории абс. скоростей р-ций имеет возможность расчета константы равновесия процесса образования активир. комплекса (переходного состояния), к-рое представляется как модифицир. частица, одна из колебат. степеней свободы к-рой заменена степенью свободы поступат. движения.

Неидеальные системы. В реальных газах молекулы взаимод. друг с другом. В этом случае сумма по состояниям ансамбля не сводится к произведению сумм по состояниям отдельных молекул . Если считать, что межмол. взаимод. не влияют на внутр. состояния молекул , статистич. сумма системы в классич. приближении для газа , состоящего из N тождеств. частиц, имеет вид:

где

Здесь <2 N -конфигурац. интеграл, учитывающий взаимод. молекул . Наиб, часто потенц. энергия молекул U рассматривается в виде суммы парных потенциалов: U = =где U(r ij)- потенциал центр. сил, зависящий от расстояния r ij между молекулами i и j. Учитывают также многочастичные вклады в потенц. энергию, эффекты ориентации молекул и т.д. Необходимость расчета конфигурац. интеграла возникает при рассмотрении любых конденсир. фаз и границ раздела фаз. Точное решение задачи мн. тел практически невозможно, поэтому для расчета статистич. суммы и всех термодинамич. св-в, получаемых из статистич. суммы дифференцированием по соответствующим параметрам, используют разл. приближенные методы.

Согласно т. наз. методу групповых разложений, состояние системы рассматривается в виде совокупности комплексов (групп), состоящих из разного числа молекул , и конфигурац. интеграл распадается на совокупность групповых интегралов. Такой подход позволяет представить любую термодинамич. ф-цию реального газа в виде ряда по степеням плотности. Наиб. важное соотношение такого рода - вириальное ур-ние состояния.

Для теоретич. описания св-в плотных газов , жидкостей и твердых тел , р-ров неэлектролитов и электролитов и границ раздела в этих системах более удобным, чем прямой расчет статистич. суммы, является метод n-частичных ф-ций распределения. В нем вместо подсчета статистич. веса каждого состояния с фиксир. энергией используют соотношения между ф-циями распределения f n , к-рые характеризуют вероятность нахождения частиц одновременно в точках пространства с координатами r 1 ,..., r n ; при n = N f N = b т f(p, r)dp (здесь и ниже q i = r i). Одночастичная ф-ция f 1 (r 1) (n = 1) характеризует распределение плотности в-ва. Для твердого тела это периодич. ф-ция с максимумами в узлах кристаллич. структуры; для газов или жидкостей в отсутствие внеш. поля это постоянная величина, равная макроскопич. плотности в-ва р. Двухчастичная ф-ция распределения (п = 2) характеризует вероятность нахождения двух частиц в точках 1 и 2, она определяет т. наз. корреляционную ф-цию g(|r 1 - r 2 |) = f 2 (r 1 , r 2)/r 2 , характеризующую взаимную корреляцию в распределении частиц. Соответствующую опытную информацию дает рентгеновский структурный анализ .

Ф-ции распределения размерности n и n + 1 связаны бесконечной системой зацепляющихся интегродифференц. ур-ний Боголюбова-Борна-Грина-Кирквуда-Ивона, решение к-рых чрезвычайно сложно, поэтому эффекты корреляции между частицами учитывают введением разл. аппроксимаций, к-рые определяют, каким бразом ф-ция f n выражается через ф-ции меньшей размерности. Соотв. разработано неск. приближенных методов расчета ф-ций f n , а через них-всех термодинамич. характеристик рассматриваемой системы. Наиб. применение имеют приближения Перкус-Иевика и гиперцепное.

Решеточные модели конденсир. состояния нашли широкое применение при термодинамич. рассмотрении практически всех физ.-хим. задач. Весь объем системы разбивается на локальные области с характерным размером порядка размера молекулы u 0 . В общем случае в разных моделях размер локальной области м. б. как больше, так и меньше u 0 ; в большинстве случаев они совпадают. Переход к дискретному распределению молекул в пространстве существенно упрощает подсчет разл. конфигураций молекул . Решеточные модели учитывают взаимод. молекул друг с другом; энергия взаимод. описывается энергетич. параметрами. В ряде случаев решеточные модели допускают точные решения, что позволяет оценить характер используемых приближений. С их помощью возможно рассмотрение многочастичных и специфич. взаимод., ориентац. эффектов и т. п. Решеточные модели являются основными при изучении и проведении прикладных расчетов растворов неэлектролитов и полимеров , фазовых переходов , критических явлений , сильно неоднородных систем.

Численные методы определения термодинамич. св-в приобретают все большее значение по мере развития вычислит. техники. В методе Монте-Карло осуществляется прямой расчет многомерных интегралов, что позволяет непосредственно получить статистич. среднее наблюдаемой величины А(r1.....r N) по любому из статистич. ансамблей (напр., А - энергия системы). Так, в канонич. ансамбле термодинамич. среднее имеет вид:

Данный метод применим практически ко всем системам; получаемые с его помощью средние величины для ограниченных объемов (N = 10 2 -10 5) служат хорошим приближением для описания макроскопич. объектов и могут рассматриваться как точные результаты.

В методе мол. динамики эволюция состояния системы рассматривается с помощью численного интегрирования ур-ний Ньютона для движения каждой частицы (N = = 10 2 -10 5) при заданных потенциалах межчастичного взаимодействия. Равновесные характеристики системы получаются при усреднении по фазовым траекториям (по скоростям и координатам) на больших временах, после установления максвелловского распределения частиц по скоростям (т. наз. период термализации).

Ограничения в использовании численных методов в осн. определяются возможностями ЭВМ. Спец. вычислит. приемы позволяют обходить сложности, связанные с тем, что рассматривается не реальная система, а небольшой объем; это особенно важно при учете дальнодействующих потенциалов взаимод., анализе фазовых переходов и т.п.

Физическая кинетика - раздел статистич. физики, к-рый дает обоснование соотношениям термодинамики необратимых процессов , описывающим перенос энергии, импульса и массы, а также влияние на эти процессы внеш. полей. Кинетич. коэффициенты-макроскопич. характеристики сплошной среды, определяющие зависимости потоков физ. величин (теплоты, импульса, массы компонентов и др.) от вызывающих эти потоки градиентов т-ры, концентрации , гидродинамич. скорости и др. Необходимо различать коэффициенты Онсагера, входящие в ур-ния, связывающие потоки с термодинамич. силами (термодинамич. ур-ния движения), и коэффициенты переноса (диффузии , теплопроводности , вязкости и т. п.), входящие в ур-ния переноса. Первые м. б. выражены через вторые с помощью соотношений между макроскопич. характеристиками системы, поэтому в дальнейшем будут рассматриваться лишь коэф. переноса.

Для расчета макроскопич. коэф. переноса необходимо провести усреднение по вероятностям реализаций элементарных актов переноса с помощью неравновесной ф-ции распределения. Главная сложность заключается в том, что аналит. вид ф-ции распределения f(р, q, т) (т-время) неизвестен (в отличие от равновесного состояния системы, к-рое описывается с помощью ф-ций распределения Гиббса, получаемых при т : , ). Рассматривают n-частичные ф-ции распределения f n (r , q, т), к-рые получают из ф-ций f(р, q, т) усреднением по координатам и импульсам остальных (N - п) частиц:

Для них м. б. составлена система ур-ний, позволяющая описать произвольные неравновесные состояния. Решение этой системы ур-ний очень сложно. Как правило, в кинетич. теории газов и газообразных квазичастиц в твердом теле (фермионов и бозонов) используется лишь ур-ние для одно-частичной ф-ции распределения f 1 . В предположении об отсутствии корреляции между состояниями любых частиц (гипотеза мол. хаоса) получено т. наз. кинетич. ур-ние БоЛьцмана (Л. Больцман, 1872). Это ур-ние учитывает изменение ф-ции распределения частиц под действием внеш. силы F(r, т) и парных столкновений между частицами:

где f 1 (u, r, т) и -ф-ции распределения частиц до столкновения, f " 1 (u", r, т) и-ф-ции распределения после столкновения; u и-скорости частиц до столкновения, u" и -скорости тех же частиц после столкновения, и = |u -|-модуль относит. скорости сталкивающихся частиц, q - угол между относит. скоростью u - сталкивающихся частиц и линией, соединяющей их центры, s (u,q )dW -дифференц. эффективное сечение рассеяния частиц на телесный угол dW в лаб. системе координат, зависящее от закона взаимод. частиц. Для модели молекул в виде упругих жестких сфер, имеющих радиус R, принимается s = 4R 2 cosq . В рамках классич. механики дифференц. сечение выражается через параметры столкновения b и e (соотв. прицельное расстояние и азимутальный угол линии центров): s dW = bdbde , а молекулы рассматриваются как центры сил с потенциалом, зависящим от расстояния. Для квантовых газов выражение для дифференц. эффективного сечения получают на основе квантовой механики , с учетом влияния эффектов симметрии на вероятность столкновения.

Если система находится в статистич. равновесии , интеграл столкновений Stf равен нулю и решением кинетич. ур-ния Больцмана будет распределение Максвелла. Для неравновесных состояний решения кинетич. уравнения Больцмана обычно ищут в виде разложения в ряд ф-ции f 1 (u, r, т) по малым параметрам относительно ф-ции распределения Максвелла. В простейшем (релаксационном) приближении интеграл столкновений аппроксимируется как Stf газах с внутр. степенями свободы симметрии теплопроводность жидкости , можно использовать локально равновесную одночастичную ф-цию распределения с т-рой, хим. потенциалами и гидродинамич. скоростью, к-рые соответствуют рассматриваемому малому объему жидкости . К ней можно найти поправку, пропорциональную градиентам т-ры, гидродинамич. скорости и хим. потенциалам компонентов, и вычислить потоки импульсов, энергии и в-ва, а также обосновать ур-ния Навье-Стокса, теплопроводности и диффузии . В этом случае коэф. переноса оказываются пропорциональными пространственно-временным корреляц. ф-циям потоков энергии, импульса и в-ва каждого компонента.

Для описания процессов переноса в-ва в твердых телах и на границах раздела с твердым телом широко используется решеточная модель конденсир. фазы. Эволюция состояния системы описывается осн. кинетич. ур-нием (master equation) относительно ф-ции распределения P(q, т):

где P(q,т)= т f(p,q,т)du- ф-ция распределения, усредненная по импульсам (скоростям) всех N частиц, описывающая распределение частиц по узлам решеточной структуры (их число равно N y , N < N y), q- номер узла или его координата. В модели "решеточного газа " частица может находиться в узле (узел занят) или отсутствовать (узел свободен); W(q : q")-вероятность перехода системы в единицу времени из состояния q, описываемого полным набором координат частиц, в др. состояние q". Первая сумма описывает вклад всех процессов, в к-рых осуществляется переход в данное состояние q, вторая сумма-выход из этого состояния. В случае равновесного распределения частиц (т : , ) P(q) = exp[-H(q)/kT]/Q, где Q-статистич. сумма, H(q)-энергия системы в состоянии q. Вероятности перехода удовлетворяют детального равновесия принципу: W(q": q)exp[-H(q")/kT] = W(q : q")ехр[-H(q)/kТ]. На базе ур-ний для функций P(q,т) строят кинетич. ур-ния для n-частичных ф-ций распределения, к-рые получают путем усреднения по расположениям всех остальных (N - п) частиц. Для малых h кинетич. ур-ния м. б. решены аналитически или численно и с их помощью м. б. получены коэф. диффузии , самодиффузии, сдвиговой вязкости , подвижности и т.п. Такой подход применим к процессам переноса в-ва в моноатомных кристаллах релаксации системы к равновесному состоянию позволяет рассмотреть разл. переходные процессы при исследовании кинетики фазовых превращений, роста кристаллов , кинетики поверхностных р-ций и т.д. и определить их динамич. характеристики, в т. ч. и коэф. переноса.

Для расчета коэф. переноса в газообразных, жидких и твердых фазах, а также на границах раздела фаз активно используются разнообразные варианты метода мол. динамики, к-рый позволяет детально проследить за эволюцией системы от времен ~10 -15 с до ~10 -10 с (на временах порядка 10 -10 - 10 -9 с и более используются т. наз. ур-ния Ланжевена, это ур-ния Ньютона, содержащие в правой части стохастич. слагаемое).

Для систем с хим. р-циями на характер распределения частиц большое влияние оказывает соотношение между характерными временами переноса реагентов и их хим. превращения. Если скорость хим. превращения мала, распределение частиц не сильно отличается от случая, когда р-ция отсутствует. Если скорость р-ции велика, ее влияние на характер распределения частиц велико и использовать средние концентрации частиц (т.е. ф-ции распределения с n = 1), как это делается при использовании закона действующих масс , нельзя. Необходимо более детально описывать распределение реагентов с помощью ф-ций распределения f n с n > 1. Важное значение при описании реакц. потоков частиц на пов-сти и скоростей диффузионно-контролируемых реакций имеют граничные условия (см. Макрокинетика)., 2 изд., М., 1982; Берклеевский курс физики, пер. с англ., 3 изд., т. 5-Рейф Ф., Статистическая физика, М., 1986; Товбин Ю.К., Теория физико-химических процессов на границе газ-твердое тело, М., 1990. Ю.К. Товбин.

Статистическая физика и термодинамика

Статистический и термодинамический методы исследования . Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический ) и термодинами­ческий . Первый лежит в основе молекулярной физики, второй - термодинамики.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460-370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822-1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах - фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

Основные постулаты молекулярно-кинетической теории (МКТ)

1. Все тела в природе состоят из огромного количества мельчайших частиц (атомов и молекул).

2. Эти частицы находятся в непрерывном хаотическом (беспорядочном) движении.

3. Движение частиц связано с температурой тела, поэтому оно называется тепловым движением .

4. Частицы взаимодействуют друг с другом.

Доказательства справедливости МКТ: диффузия веществ, броуновское движение, теплопроводность.

Физические величины, использующиеся для описания процессов в молекулярной физике делят на два класса:

микропараметры – величины, описывающие поведения отдельных частиц (масса атома (молекулы), скорость, импульс, кинетическая энергия отдельных частиц);
макропараметры – величины, не сводимые к отдельным частицам, но характеризующие свойства вещества в целом. Значения макропараметров определяются результатом одновременного действия огромного количества частиц. Макропараметры – это температура, давление, концентрация и т. п.

Температура - одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, харак­теризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы - термодина­мическую и Международную практическую , градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С).

В термодинамической шкале температура замерзания воды равна 273,15 К (при том же

давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Между­народной практической

шкале связаны соотношением

Т = 273,15 + t .

Температура T = 0 К называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно. 0 К – это температура, при которой теоретически должно прекратиться всякое тепловое движение частиц вещества.

В молекулярной физике выводится связь между макропараметрами и микропараметрами. Например, давление идеального газа может быть выражено формулой:

position:relative; top:5.0pt"> - масса одной молекулы, - концентрация, font-size: 10.0pt">Из основного уравнения МКТ можно получить удобное для практического использования уравнение:

font-size: 10.0pt">Идеальный газ – это идеализированная модель газа, в которой считают, что:

1. собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2. между молекулами отсутствуют силы взаимодействия (притяжения и отталкивания на расстоянии;

3. столкновения молекул между собой и со стенками сосуда абсолютно упругие.

Идеальный газ – это упрощенная теоретическая модель газа. Но, состояние многих газов при определенных условиях могут быть описаны этим уравнением.

Для описания состояния реальных газов в уравнение состояния необходимо ввести поправки. Наличие сил отталкивания, которые проти­водействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет меньше. где b - молярный объем, занимаемый самими молекулами.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислени­ям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату моляр­ного объема, т. е. где а - постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного при­тяжения, V m - молярный объем.

В итоге мы получим уравнение состояния реального газа или уравнение Ван-дер-Ваальса :

font-size:10.0pt;font-family:" times new roman> Физический смысл температуры: температура – это мера интенсивности теплового движения частиц веществ. Понятие температуры не применимо к отдельной молекуле. Лишь для достаточно большого количества молекул, создающих некое количество вещества, появляется смысл относить термин температуры.

Для идеального одноатомного газа можно записать уравнение:

font-size:10.0pt;font-family:" times new roman>Первое экспериментальное определение скоростей молекул выпо­лнено немецким физиком О. Штерном (1888-1970). Его опыты позволили также оценить распределение молекул по скоростям.

«Противостояние» между потенциальными энергиями связи молекул и энергиями теплового движения молекул (кинетическими молекулами) приводит к существованию различных агрегатных состояний вещества.

Термодинамика

Подсчитав количество молекул в данной системе и оценив их средние кинетическую и потенциальную энергии, можно оценить внутреннюю энергию данной системы U .

font-size:10.0pt;font-family:" times new roman>Для идеального одноатомного газа .

Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы или сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в котором находится газ, мы сжимаем этот газ, в результате чего его температура повышается, т. е. тем самым изменяется (увеличивается) внутренняя энергия газа. С другой сторо­ны, температуру газа и его внутреннюю энергию можно увеличить за счет сообщения ему некоторого количества теплоты - энергии, переданной системе внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с раз­ными температурами).

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики , установленное в результате обобщения многовековых опытных данных:

В замкнутом цикле , поэтому font-size:10.0pt;font-family:" times new roman>КПД теплового двигателя: .

Из первого начала термодинамики следует, что КПД теплового двигателя не может быть больше 100%.

Постулируя существование различных форм энергии и связи между ними первое начало ТД ничего не говорит о направленности процессов в природе. В полном соответствии с первым началом можно мысленно сконструировать двигатель, в котором за счет уменьшения внутренней энергии вещества совершалась бы полезная работа. Например, вместо горючего в тепловом двигателе использовалась бы вода, и за счет охлаждения воды и превращения ее в лед совершалась бы работа. Но подобные самопроизвольные процессы в природе не происходят.

Все процессы в природе можно разделить на обратимые и необратимые.

Одной из основных проблем в классическом естествознании долгое время оставалась проблема объяснения физической природы необратимости реальных процессов. Суть проблемы заключается в том, что движение материальной точки, описываемое II законом Ньютона (F = ma), обратимо, тогда как большое число материальных точек ведет себя необратимо.

Если число исследуемых частиц невелико (например, две частицы на рисунке а)), то мы не сможем определить, куда направлена ось времени: слева направо или справа налево, так как любая последовательность кадров явлется одинаково возможной. Это и есть обратимое явление . Ситуация существенно меняется, если число частиц очень велико (рис. б)). В этом случае направление времени определяется однозначно: слева направо, так как невозможно представить, что равномерно распределенные частицы сами по себе, без каких-то внешних воздействий соберутся в углу «ящика». Такое поведение, когда состояние системы может изменяться только в определенной последовательности, называется необратимым . Все реальные процессы необратимы.

Примеры необратимых процессов: диффузия, теплопроводность, вязкое течение. Почти все реальные процессы в природе являются необратимыми: это и затухание маятника, и эволюция звезды, и человеческая жизнь. Необратимость процессов в природе как бы задает направление на оси времени от прошлого к будущему. Это свойство времени английский физик и астроном А. Эддингтон образно назвал «стрелой времени».

Почему же, несмотря на обратимость поведения одной частицы, ансамбль из большого числа таких частиц ведет себя необратимо? В чем природа необратимости? Как обосновать необратимость реальных процессов, опираясь на законы механики Ньютона? Эти и другие аналогичные вопросы волновали умы самых выдающихся ученых XVIII–XIX вв.

Второе начало термодинамики устанавливает направленность всех процессов в изолированных системах. Хотя общее количество энергии в изолированной системе сохраняется, ее качественный состав меняется необратимо .

1. В формулировке Кельвина второе начало таково: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

2. В другой формулировке: «Теплота самопроизвольно может переходить только от более нагретого тела к менее нагретому».

3. Третья формулировка: «Энтропия в замкнутой системе может только увеличиваться».

Второе начало термодинамики запрещает существование вечного двигателя второго рода , т. е. машины, способной совершать работу за счет переноса тепла от холодного тела к горячему. Второй закон термодинамики указывает на существование двух различных форм энергии - теплоты как меры хаотического движения частиц и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло, но тепло нельзя полностью превратить в работу. Таким образом, неупорядоченную форму энергии нельзя без каких либо дополнительных действий превратить в упорядоченную.

Полное превращение механической работы в теплоту мы делаем каждый раз, нажимая на педаль тормоза в автомобиле. А вот без каких-либо дополнительных действий в замкнутом цикле работы двигателя перевести всю теплоту в работу нельзя. Часть тепловой энергии неизбежно расходуется на нагревание двигателя, плюс движущийся поршень постоянно совершает работу против сил трения (на это тоже расходуется запас механической энергии).

Но смысл второго начала термодинамики оказался еще глубже.

Еще одной формулировкой второго начала термодинамики является следующее утверждение: энтропия замкнутой системы является неубывающей функцией, то есть при любом реальном процессе она либо возрастает, либо остается неизменной.

Понятие энтропии, введенное в термодинамику Р. Клаузиусом, носило первоначально искусственный характер. Выдающийся французский ученый А. Пуанкаре писал по этому поводу: «Энтропия представляется несколько таинственной в том смысле, что величина эта недоступна ни одному из наших чувств, хотя и обладает действительным свойством физических величин, так как, по крайней мере в принципе, вполне поддается измерению».

По определению Клаузиуса, энтропией называется такая физическая величина, приращение которой равно количеству тепла , полученному системой, деленному на абсолютную температуру:

font-size:10.0pt;font-family:" times new roman>В соответствии со вторым законом термодинамики в изолированных системах, т. е. системах, не обменивающихся с окружающей средой энергией, неупорядоченное состояние (хаос) не может самостоятельно перейти в порядок. Таким образом, в изолированных системах энтропия может только расти. Эта закономерность получила название принципа возрастания энтропии . Согласно этому принципу, любая система стремится к состоянию термодинамического равновесия, которое отождествляется с хаосом. Поскольку увеличение энтропии характеризует изменения во времени замкнутых систем, то энтропия выступает в качестве своеобразной стрелы времени .

Состояние с максимальной энтропией мы назвали неупорядоченным, а с малой энтропией - упорядоченным. Статистическая система, если она предоставлена самой себе, переходит из упорядоченного в неупорядоченное состояние с максимальной энтропией, соответствующей данным внешним и внутренним параметрам (давление, объем, температура, число частиц и т. д.).

Людвиг Больцман связал понятие энтропии с понятием термодинамической вероятности: font-size:10.0pt;font-family:" times new roman> Таким образом, любая изолированная система, предоставленная сама себе, с течением времени переходит от состояния упорядоченности в состояние максимального беспорядка (хаоса).

Из этого принципа вытекает пессимистическая гипотеза о тепловой смерти Вселенной, сформулированная Р. Клаузиусом и У. Кельвином, в соответствии с которой:

· энергия Вселенной всегда постоянна;

· энтропия Вселенной всегда возрастает.

Таким образом, все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующему состоянию наибольшего хаоса и дезорганизации . Все виды энергии деградируют, превратившись в тепло, и звезды закончат свое существование, отдав энергию в окружающее пространство. Установится постоянная температура лишь на насколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие планеты и звезды. Не будет ничего - ни источников энергии, ни жизни.

Такая мрачная перспектива предсказывалась физикой вплоть до 60-х годов ХХ столетия, хотя выводы термодинамики противоречили результатам исследований в биологии и социальных науках. Так, эволюционная теория Дарвина свидетельствовала, что живая природа развивается преимущественно в направлении усовершенствования и усложнения новых видов растений и животных. История, социология, экономика, другие социальные и гуманитарные науки так же показывали, что в обществе, несмотря на отдельные зигзаги развития, в целом наблюдается прогресс.

Опыт и практическая деятельность свидетельствовали, что понятие закрытой или изолированной системы является достаточно грубой абстракцией , упрощающей действительность, поскольку в природе трудно найти системы, не взаимодействующие с окружающей средой. Противоречие стало разрешаться, когда в термодинамике вместо понятия закрытой изолированной системы ввели фундаментальное понятие открытой системы, т. е. системы, обменивающейся с окружающей средой веществом, энергией и информацией.

Материал из FFWiki.

Предмет Термодинамика и статистическая физика Семестр 7-8 Тип лекция, семинар Отчётность экзамен Кафедра Кафедра квантовой статистики и теории поля

О предмете

Термодинамика и статфизика. Первый вопрос, когда видишь этот предмет в расписании: как так? Действительно, на 1 курсе уже рассказывали молекулярную физику, где были и все 3 начала термодинамики, и потенциалы, и распределение Максвелла. Казалось бы, что еще нового может быть в природе?

Оказывается, то, что было на 1 курсе - детский лепет по сравнению с настоящей термодинамикой и статфизикой. Той, с помощью которой Ландау посчитал жидкий гелий и получил Нобелевскую премию.

Важно не попасть впросак, подумав, что раз на 1 лекции рассказывают то, что вы знали еще в школе, то и дальше так будет. Уже с середины сентября вы станете свидетелями потрясающих фокусов-подгонов с частными производными, а к концу осеннего семестра пойдут весьма зубодробительные темы по статфизике:

  • Расчет стат.сумм и распределений Гиббса
  • Квантовые газы - ферми- и бозе- газы с разных условиях
  • Фазовые переходы и их свойства
  • Неидеальные газы - цепочки Боголюбова, модели плазмы и электролитов

Автор сих слов хотя и смог подготовиться на отл за 4 дня перед экзаменами, но весьма в этом раскаивается и не советует никому повторять такое насилие над своим мозгом:) Задачи и вопросы к экзамену известны с начала года и очень полезно подготовить часть материала заранее.

В весеннем семестре есть как простые, так и сложные темы. Например, теория для броуновского движения выписывается весьма легко. А вот в конце курса идут разнообразные кинетические уравнения, с которыми разобраться гораздо сложнее.

Экзамен

Экзамен осенью проходит весьма прилично, списывать особо не дают. Преподаватели в большинстве своем не валят, но и халявы особой не замечено. Нужно знать теормин. В диплом идет оценка за экзамен весной. Весенний экзамен по своему материалу сложнее осеннего, но принимают обычно более лояльно. Однако теормин также следует знать хорошо.

В билете и осенью, и весной находится 2 теоретических вопроса и одна задача.

Будьте аккуратны на статах, несколько человек (число варьируется от 2 до 10!) регулярно заканчивают учебу несдачей этого экзамена. И это не кто попало, а прожжёные четверокурсники.

Материалы

Осенний семестр

Весенний семестр

  • Ответы на вопросы к экзамену, теория (pdf) - аккуратно набранные на компьютеры ответы на теоретические вопросы экзамена.
  • - решения задач
  • Решения задач к экзамену(pdf) - еще решения задач

Литература

Задачники

  • Задания по термодинамике и статистической физике для студентов 4-го курса физического факультета МГУ(осенний семестр - теория равновесных систем) (pdf)

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство