Правильная пятиугольная призма формулы. Прямая призма — Гипермаркет знаний

Правильная пятиугольная призма формулы. Прямая призма — Гипермаркет знаний

Многоугольники ABCDE и FHKMP , лежащие в параллельных плоскостях, называются основаниями призмы, перпендикуляр OO 1 , опущенный из любой точки основания на плоскость другого, называется высотой призмы. Параллелограммы ABHF , BCKH и т.д. называются боковыми гранями призмы, а их стороны СК , DM и т.д., соединяющие соответственные вершины оснований, - боковыми ребрами. У призмы все боковые ребра равны между собой как отрезки параллельных прямых, заключенных между параллельными плоскостями.
Призма называется прямой (фиг.282,б ) или наклонной (фиг.282,в ) в зависимости от того, будут ли ее боковые ребра перпендикулярны или наклонны к основаниям. У прямой призмы боковые грани - прямоугольники. За высоту такой призмы можно принять боковое ребро.
Прямая призма называется правильной, если ее основания - правильные многоугольники. У такой призмы все боковые грани - равные прямоугольники.
Для изображения на комплексном чертеже призмы надо знать и уметь изображать элементы, из которых она состоит (точку, прямую, плоскую фигуру).
и их изображение на комплексном чертеже (фиг.283, а - и)

а) Комплексный чертеж призмы. Основание призмы расположено на плоскости проекций П 1 ; одна из боковых граней призмы параллельна плоскости проекций П 2 .
б) Ниокнее основание призмы DEF - плоская фигура - правильный треугольник, расположенный в плоскости П 1 ; сторона треугольника DE параллельна оси х 12 - Горизонтальная проекция сливается с данным основанием и, следовательно, равна его натуральной величине; фронтальная проекция сливается с осью х 12 и равна стороне основания призмы.
в) Верхнее основание призмы АВС - плоская фигура - треугольник, расположенный в горизонтальной плоскости. Горизонтальная проекция сливается с проекцией нижнего основания и закрывает собой ее, так как призма прямая; фронтальная проекция - прямая, параллельная оси х 12 , на расстоянии высоты призмы.
г) Боковая грань призмы ABED - плоская фигура - прямоугольник, лежащий во фронтальной плоскости. Фронтальная проекция - прямоугольник, равный натуральной величине грани; горизонтальная проекция - прямая, равная стороне основания призмы.
д) и е) Боковые грани призмы ACFD и CBEF - плоские фигуры - прямоугольники, лежащие в горизонтально - проектирующих плоскостях, расположенных под углом 60° к плоскости проекций П 2 . Горизонтальные проекции - прямые, расположенные к оси х 12 под углом 60° , и равны натуральной величине сторон основания призмы; фронтальные проекции - прямоугольники, изображение которых меньше натуральной величины: две стороны каждого прямоугольника равны высоте призмы.
ж) Ребро AD призмы - прямая, перпендикулярная к плоскости проекций П 1 . Горизонтальная проекция - точка; фронтальная - прямая, перпендикулярная оси х 12 , равная боковому ребру призмы (высоте призмы).
з) Сторона АВ верхнего основания - прямая, параллельная плоскостям П 1 и П 2 . Горизонтальная и фронтальная проекции - прямые, параллельные оси х 12 и равные стороне данного основания призмы. Фронтальная проекция отстоит от оси х 12 на расстоянии, равном высоте призмы.
и) Вершины призмы. Точка Е - вершина нижнего основания расположена на плоскости П 1 . Горизонтальная проекция совпадает с самой точкой; фронтальная - лежит на оси x 12 .Точка С - вершина верхнего основания - расположена в пространстве. Горизонтальная проекция имеет глубину; фронтальная - высоту, равную высоте данной призмы.
Отсюда следует: проектируя всякий многогранник, надо мысленно расчленить его на составные элементы и определить порядок их изображения, состоящий из последовательных графических операций. На (фиг.284 и фиг.285) приведены примеры последовательных графических операций при выполнении комплексного чертежа и наглядного изображения (аксонометрии) призм.
(фиг.284).

Дано:
1. Основание расположено на плоскости проекций П 1 .
2. Ни одна из сторон основания не параллельна оси х 12 .
I. Комплексный чертеж.
I, а. Проектируем нижнее основание - многоугольник, по условию лежащий в плоскости П 1 .
I, б. Проектируем верхнее основание - многоугольник, равный нижнему основанию с соответственно параллельными нижнему основанию сторонами, отстоящий от нижнего основания на высоту H данной призмы.
I, в. Проектируем боковые ребра призмы - отрезки, расположенные параллельно; их горизонтальные проекции - точки, сливающиеся с проекциями вершин оснований; фронтальные - отрезки (параллельные), полученные от соединения прямыми одноименных проекций вершин оснований. Фронтальные проекции ребер, проведенные из проекций вершин В и С нижнего основания, изображаем штриховыми линиями, как невидимые.
I, г . Даны: горизонтальная проекция F 1 точки F на верхнем основании и фронтальная проекция К 2 точки К на боковой грани. Требуется определить места их вторых проекций.
Для точки F . Вторая (фронтальная) проекция F 2 точки F будет совпадать с проекцией верхнего основания, как точка, лежащая в плоскости этого основания; ее место определяется вертикальной линией связи.
Для точки К - Вторая (горизонтальная) проекция K 1 точки К будет совпадать с горизонтальной проекцией боковой грани, как точка, лежащая в плоскости грани; ее место определяется вертикальной линией связи.
II. Развертка поверхности призмы - плоская фигура, составленная из боковых граней - прямоугольников, у которых по две стороны равны высоте призмы, а другие две равны соответствующим сторонам основания, и из двух равных между собой оснований - неправильных многоугольников.
Натуральные размеры оснований и сторон граней, необходимые для построения развертки, выявлены на проекциях; по ним и производим построение; на прямой последовательно откладываем стороны АВ , ВС , CD , DE и ЕA многоугольника - основания призмы, взятые из горизонтальной проекции. На перпендикулярах, проведенных из точек А, В, С, D, Е и А, откладываем взятую из фронтальной проекции высоту Н данной призмы и через отметки проводим прямую. В результате получаем развертку боковых граней призмы.
Если к этой развертке пристроить основания призмы, получим развертку полной поверхности призмы. Основания призмы следует пристраивать к соответствующей боковой грани, пользуясь методом триангуляции.
На верхнем основании призмы при помощи радиусов R и R 1 определяем место точки F , а на боковой грани при помощи радиуса R 3 и Н 1 - точку K .
III. Наглядное изображение призмы в диметрии.
III, а. Изображаем нижнее основание призмы по координатам точек А, В, С, D и Е (фиг.284 I, a).
III, б. Изображаем верхнее основание параллельно нижнему, отстоящее от него на высоту Н призмы.
III, в. Изображаем боковые ребра, для чего соединяем прямыми соответствующие вершины оснований. Определяем видимые и невидимые элементы призмы и обводим их соответствующими линиями,
III, г. Определяем на поверхности призмы точки F и К - Точку F - на верхнем основании определяем при помощи размеров i и е ; точку К - на боковой грани при помощи i 1 и H" .
Для изометрического изображения призмы и определения мест точек F и К следует придерживаться той же последовательности.
фиг.285 ).

Дано:
1. Основание расположено на плоскости П 1 .
2. Боковые ребра параллельны плоскости П 2 .
3. Ни одна из сторон основания не параллельна оси x 12
I. Комплексный чертеж.
I, а. Проектируем по данному условию: нижнее основание - многоугольник, лежащий в плоскости П 1 , и боковое ребро - отрезок, параллельный плоскости П 2 и наклонный к к плоскости П 1 .
I, б. Проектируем остальные боковые ребра - отрезки, равные и параллельные первому ребру СЕ .
I, в. Проектируем верхнее основание призмы как многоугольник, равный и параллельный нижнему основанию, получаем комплексный чертеж призмы.
Выявляем на проекциях невидимые элементы. Фронтальную проекцию ребра ВМ и горизонтальную проекцию стороны основания CD изображаем штриховыми линиями как невидимые.
I, г. Дана фронтальная проекция Q 2 точки Q на проекции A 2 K 2 F 2 D 2 боковой грани; требуется найти ее горизонтальную проекцию. Для этого проводим через точку Q 2 в проекции A 2 K 2 F 2 D 2 грани призмы вспомогательную прямую, параллельную боковым ребрам этой грани. Находим горизонтальную проекцию вспомогательной прямой и на ней при помощи вертикальной линии связи определяем место искомой горизонтальной проекции Q 1 точки Q .
II. Развертка поверхности призмы.
Имея на горизонтальной проекции натуральные размеры сторон основания, а на фронтальной - размеры ребер, можно построить полную развертку поверхности данной призмы.
Будем катить призму, повертывая ее каждый раз вокруг бокового ребра, тогда каждая боковая грань призмы на плоскости будет оставлять след (параллелограмм), равный ее натуральной величине. Построение боковой развертки будем производить в следующем порядке:
а) из точек А 2 , В 2 , D 2 . . . Е 2 (фронтальных проекций вершин оснований) проводим вспомогательные прямые, перпендикулярные к проекциям ребер;
б) радиусом R (равным стороне основания CD ) делаем на вспомогательной прямой, проведенной из точки D 2 , засечку в точке D ; соединив прямой точки С 2 и D и проведя прямые, параллельные E 2 С 2 и C 2 D , получим боковую грань CEFD ;
в) затем, аналогично пристроив следующие боковые грани, получим развертку боковых граней призмы. Для получения полной развертки поверхности данной призмы пристраиваем к соответствующим граням основания.
III. Наглядное изображение призмы в изометрии.
III, а. Изображаем нижнее основание призмы и ребро СЕ , пользуясь координатами согласно (

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

Общие сведения о прямой призме

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S = a 1 l + a 2 l + ... + a n l = pl,

где a 1 ,а n - длины ребер основания, р - периметр основания призмы, а I - длина боковых ребер. Теорема доказана.

Практическое задание

Задача (22) . В наклонной призме проведено сечение , перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 411). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Обобщение пройденной темы

А теперь давайте попробуем с вами подвести итоги пройденной темы о призме и вспомним, какими свойствами обладает призма.


Свойства призмы

Во-первых, у призмы все ее основания являются равными многоугольниками;
Во-вторых, у призмы все ее боковые грани являются параллелограммами;
В-третьих, у такой многогранной фигуры, как призма, все боковые ребра равны;

Также, следует вспомнить, что такие многогранники, как призмы могут быть прямыми и наклонными.

Какая призма называется прямой?

Если же у призмы боковое ребро расположено перпендикулярно плоскости ее основания, то такая призма носит название прямой.

Не будет лишним напомнить, что боковые грани прямой призмы являются прямоугольниками.

Какую призму называют наклонной?

А вот если же у призмы боковое ребро не расположено перпендикулярно плоскости ее основания, то можно смело утверждать, что это наклонная призма.

Какую призму называют правильной?



Если у основания прямой призмы лежит правильный многоугольник, то такая призма является правильной.

Теперь вспомним свойства, которыми обладает правильная призма.

Свойства правильной призмы

Во-первых, всегда основаниями правильной призмы служат правильные многоугольники;
Во-вторых, если рассматривать у правильной призмы боковые грани, то они всегда бывают равными прямоугольниками;
В-третьих, если сравнивать размеры боковых ребер, то в правильной призме они всегда равны.
В-четвертых, правильная призма всегда прямая;
В-пятых, если же в правильной призмы боковые грани имеют форму квадратов, то такую фигуру, как правило, называют полуправильным многоугольником.

Сечение призмы

А теперь давайте рассмотрим сечение призмы:



Домашнее задание

А теперь давайте попробуем закрепить изученную тему с помощью решения задач.

Давайте нарисуем наклонную треугольную призму, у которой расстояние между ее ребрами будет равно: 3 см, 4 см и 5 см, а боковая поверхность этой призмы будет равна 60 см2. Имея такие параметры, найдите боковое ребро данной призмы.

А вы знаете, что геометрические фигуры постоянно окружают нас не только на уроках геометрии, но и в повседневной жизни встречаются предметы, которые напоминают ту или иную геометрическую фигуру.



У каждого дома, в школе или на работе имеется компьютер, системный блок которого имеет форму прямой призмы.

Если вы возьмете в руки простой карандаш, то вы увидите, что основной частью карандаша, является призма.

Идя по центральной улице города, мы видим, что у нас под ногами лежит плитка, которая имеет форму шестиугольной призмы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Определение. Призма - это многогранник, все вершины которого расположены в двух параллельных плоскостях, причем в этих же двух плоскостях лежат две грани призмы, представляющие собой равные многоугольники с соответственно параллельными сторонами, а все ребра, не лежащие в этих плоскостях, параллельны.

Две равные грани называются основаниями призмы (ABCDE, A 1 B 1 C 1 D 1 E 1) .

Все остальные грани призмы называются боковыми гранями (AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

Все боковые грани образуют боковую поверхность призмы .

Все боковые грани призмы являются параллелограммами.

Ребра, не лежащие в основаниях, называются боковыми ребрами призмы(AA 1 , BB 1 , CC 1 , DD 1 , EE 1 ).

Диагональю призмы называется отрезок, концами которого служат две вершины призмы, не лежащие на одной ее грани (АD 1).

Длина отрезка, соединяющего основания призмы и перпендикулярного одновременно обоим основаниям,называется высотой призмы .

Обозначение: ABCDE A 1 B 1 C 1 D 1 E 1 . (Сначала в порядке обхода указывают вершины одного основания, а затем в том же порядке - вершины другого; концы каждого бокового ребра обозначают одинаковыми буквами, только вершины, лежащие в одном основании, обозначаются буквами без индекса, а в другом - с индексом)

Название призмы связывают с числом углов в фигуре, лежащей в ее основании, например, на рисунке 1 в основании лежит пятиугольник, поэтому призму называют пятиугольной призмой . Но т.к. у такой призмы 7 граней, то она семигранник (2 грани - основания призмы, 5 граней - параллелограммы, - ее боковые грани)

Среди прямых призм выделяется частный вид: правильные призмы.

Прямая призма называется правильной, если ее основания-правильные многоугольники.

У правильной призмы все боковые грани равные прямоугольники. Частным случаем призмы является параллелепипед.

Параллелепипед

Параллелепипед - это четырехугольная призма, в основании которой лежит параллелограмм (наклонный параллелепипед).Прямой параллелепипед - параллелепипед, у которого боковые ребра перпендикулярны плоскостям основания.

Прямоугольный параллелепипед - прямой параллелепипед, основанием которого является прямоугольник.

Свойства и теоремы:


Некоторые свойства параллелепипеда аналогичны известным свойствам параллелограмма.Прямоугольный параллелепипед, имеющий равные измерения, называются кубом .У куба все грани равные квадраты.Квадрат диагонали, равен сумме квадратов трех его измерений

,

где d - диагональ квадрата;
a - сторона квадрата.

Представление о призме дают:

  • различные архитектурные сооружения;
  • детские игрушки;
  • упаковочные коробки;
  • дизайнерские предметы и т.д.





Площадь полной и боковой поверхности призмы

Площадь полной поверхности призмы называется сумма площадей всех ее гранейПлощадь боковой поверхности называется сумма площадей ее боковых гранейТ.к. основания призмы - равные многоугольник, то их площади равны. Поэтому

S полн = S бок + 2S осн ,

где S полн - площадь полной поверхности,S бок -площадь боковой поверхности, S осн - площадь основания

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы .

S бок = P осн * h,

где S бок -площадь боковой поверхности прямой призмы,

P осн - периметр основания прямой призмы,

h - высота прямой призмы, равная боковому ребру.

Объем призмы

Объем призмы равен произведению площади основания на высоту.

Многогранники

Основным объектом изучения стереометрии являются пространственные тела. Тело представляет собой часть пространства, ограниченную некоторой поверхностью.

Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называется ребрами многогранника , а вершины – вершинами многогранника .

Например, куб состоит из шести квадратов, являющихся его гранями. Он содержит 12 ребер (стороны квадратов) и 8 вершин (вершины квадратов).

Простейшими многогранниками являются призмы и пирамиды, изучением которых и займемся далее.

Призма

Определение и свойства призмы

Призмой называется многогранник, состоящий из двух плоских многоугольников, лежащих в параллельных плоскостях совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники называются основаниями призмы , а отрезки, соединяющие соответствующие вершины многоугольников, – боковыми ребрами призмы .

Высотой призмы называется расстояние между плоскостями ее оснований (). Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы (). Призма называется n-угольной , если в ее основании лежит n-угольник.

Любая призма обладает следующими свойствами, следующими из того факта, что основания призмы совмещаются параллельным переносом:

1. Основания призмы равны.

2. Боковые ребра призмы параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности . Боковая поверхность призмы состоит из параллелограммов (это следует из свойств призмы). Площадью боковой поверхности призмы называется сумма площадей боковых граней.

Прямая призма

Призма называется прямой , если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной .

Гранями прямой призмы являются прямоугольники. Высота прямой призмы равна ее боковым граням.

Полной поверхностью призмы называется сумма площади боковой поверхности и площадей оснований.

Правильной призмой называется прямая призма с правильным многоугольником в основании.

Теорема 13.1 . Площадь боковой поверхности прямой призмы равна произведению периметра на высоту призмы (или, что то же самое, на боковое ребро).

Доказательство. Боковые грани прямой призмы есть прямоугольники, основания которых являются сторонами многоугольников в основаниях призмы, а высоты являются боковыми ребрами призмы. Тогда по определению площадь боковой поверхности:

,

где – периметр основания прямой призмы.

Параллелепипед

Если в основаниях призмы лежат параллелограммы, то она называется параллелепипедом . У параллелепипеда все грани – параллелограммы. При этом противолежащие грани параллелепипеда параллельны и равны.

Теорема 13.2 . Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим две произвольные диагонали, например, и . Т.к. гранями параллелепипеда являются параллелограммы, то и , а значит по Т о двух прямых параллельных третьей . Кроме того это означает, что прямые и лежат в одной плоскости (плоскости ). Эта плоскость пересекает параллельные плоскости и по параллельным прямым и . Таким образом, четырехугольник – параллелограмм, а по свойству параллелограмма его диагонали и пересекаются и точкой пересечения делятся пополам, что и требовалось доказать.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом . У прямоугольного параллелепипеда все грани – прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). Таких размеров три (ширина, высота, длина).

Теорема 13.3 . В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений (доказывается с помощью двукратного применения Т Пифагора).

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом .

Задачи

13.1Сколько диагоналей имеет n -угольная призма

13.2В наклонной треугольной призме расстояния между боковыми ребрами равны 37, 13 и 40. Найти расстояние между большей боковой гранью и противолежащим боковым ребром.

13.3Через сторону нижнего основания правильной треугольной призмы проведена плоскость, пересекающая боковые грани по отрезкам, угол между которыми . Найти угол наклона этой плоскости к основанию призмы.

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство