Строение простого вещества кремния. Кремний. Свойства кремния. Кремний в природе. Двуокись кремния

Строение простого вещества кремния. Кремний. Свойства кремния. Кремний в природе. Двуокись кремния

После кислорода кремний является самым распространенным элементом в земной коре. Он имеет 2 устойчивых изотопа: 28 Si , 29 Si , 30 Si . В свободном виде кремний в природе не встречается.

Наиболее часто встречающиеся: соли кремниевых кислот и оксид кремний (кремнезем, песок, кварц). Они входят в состав минеральных солей, слюды, талька, асбеста.

Аллотропия кремния.

У кремния есть 2 аллотропные модификации:

Кристаллическая (светло-серые кристаллы. Структура подобна кристаллической решетке алмаза, где атом кремния ковалентно связан с 4 одинаковыми атомами , а сам находится в sp 3 - гибридизации);

Аморфная (порошок бурого цвета, более активная форма чем кристаллическая).

Свойства кремния.

При температуре кремний реагируют с кислородом воздуха:

Si + O 2 = SiO 2 .

Если кислорода не хватает (недостаток), то может иметь место такая реакция:

2 Si + O 2 = 2 SiO ,

Где SiO - монооксид, который также может образовываться при реакции:

Si + SiO 2 = 2 SiO .

В нормальных условиях кремний может реагировать с F 2 , при нагревании - с Cl 2 . Если повышать температуру дальше, то Si будет способен провзаимодействовать с N и S :

4Si + S 8 = 4SiS 2 ;

Si + 2F 2 = SiF 4 .

Кремний способен реагировать с углеродом , давая карборунд :

Si + C = SiC .

Кремний растворим в смеси концентрированной азотной и фтороводородной кислот:

3Si + 4HNO 3 + 12HF = 3SiF 4 + 4NO + 8H 2 O.

Кремний растворяется в водных растворах щелочей:

Si + 2NaOH + H 2 O = Na 2 SiO 3 + H 2 .

При нагревании с оксидами кремний диспропорционирует:

2 MgO + 3 Si = Mg 2 Si + 2 SiO .

При взаимодействии с металлами, кремний выступает в качестве окислителя:

2 Mg + Si = Mg 2 Si .

Применение кремния.

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах - транзисторах и диодах.

Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы.

Как самостоятельный химический элемент кремний стал известен человечеству всего лишь в 1825 году. Что, конечно, не мешало применять соединения кремния в таком количестве сфер, что проще перечислить те, где элемент не используется. Данная статья прольет свет на физические, механические и полезные химические свойства кремния и его соединений, области применения, также мы расскажем о том, как влияет кремний на свойства стали и иных металлов.

Для начала давайте остановимся на общей характеристике кремния. От 27,6 до 29,5% массы земной коры составляет кремний. В морской воде концентрация элемента тоже изрядная – до 3 мг/л.

По распространенности в литосфере кремний занимает второе почетное место после кислорода. Однако наиболее известная его форма – кремнезем, является диоксидом, и именно его свойства и стали основой для столь широкого применения.

О том, что такое кремний, расскажет этот видеосюжет:

Понятие и особенности

Кремний – неметалл, однако при разных условиях может проявлять и кислотные, и основные свойства. Является типичным полупроводником и чрезвычайно широко используется в электротехнике. Физические и химические его свойства во многом определяются аллотропным состоянием. Чаще всего дело имеют с кристаллической формой, поскольку ее качества более востребованы в народном хозяйстве.

  • Кремний – один из базовых макроэлементов в человеческом теле. Его нехватка губительно сказывается на состоянии костной ткани, волос, кожи, ногтей. Кроме того, кремний оказывает влияние на работоспособность иммунной системы.
  • В медицине элемент, вернее говоря, его соединения нашли свое первое применение именно в этом качестве. Вода из колодцев, выложенных кремнием, отличались не только чистотой, но и положительно сказывалась на стойкости к инфекционным болезням. Сегодня соединение с кремнием служат основой для препаратов против туберкулеза, атеросклероза, артрита.
  • В целом неметалл малоактивен, однако и в чистом виде встретить его сложно. Связано это с тем, что на воздухе он быстро пассивируется слоем диоксида и перестает реагировать. При нагревании химическая активность увеличивается. В результате человечество гораздо ближе знакомо с соединениями вещества, а не с ним самим.

Так, кремний образует сплавы практически со всеми металлами – силициды. Все они отличаются тугоплавкостью и твердостью и применяются на соответствующих участках: газовые турбины, нагреватели печей.

Размещается неметалл в таблице Д. И. Менделеева в 6 группе вместе с углеродом, германием, что указывает на определенную общность с этими веществами. Так, с углеродом его «роднит» способность к образованию соединений по типу органических. При этом кремний, как и германий может проявить свойства металла в некоторых химических реакциях, что используется в синтезе.

Плюсы и минусы

Как и всякое другое вещество с точки зрения применения в народном хозяйстве, кремний обладает определенными полезными или не слишком качествами. Важны они именно для определения области использования.

  • Немалым достоинством вещества является его доступность . В природе он, правда, находится не в свободном виде, но все же, технология получения кремния не так уж и сложна, хотя и энергозатратна.
  • Второе важнейшее достоинство – образование множества соединений с необыкновенно полезными свойствами. Это и силаны, и силициды, и диоксид, и, конечно, разнообразнейшие силикаты. Способность кремния и его соединений образовывать сложные твердые растворы практически бесконечна, что позволяет бесконечно же получать самые разные вариации стекла, камня и керамики.
  • Полупроводниковые свойства неметалла обеспечивает ему место базового материала в электро- и радиотехнике.
  • Неметалл является нетоксичным , что допускает применение в любой отрасли промышленности, и при этом не превращает технологический процесс в потенциально опасный.

К недостаткам материала можно отнести лишь относительную хрупкость при хорошей твердости. Кремний не используется для несущих конструкций, но зато это сочетание позволяет обрабатывать должным образом поверхность кристаллов, что важно для приборостроения.

Давайте теперь поговорим про основные свойства кремния.

Свойства и характеристики

Поскольку в промышленности чаще всего эксплуатируется кристаллический кремний, то именно его свойства и являются более важными, и именно они и приводятся в технических характеристиках. Физические свойства вещества таковы:

  • температура плавления – 1417 С;
  • температура кипения – 2600 С;
  • плотность составляет 2,33 г/куб. см, что свидетельствует о хрупкости;
  • теплоемкость, как и теплопроводность не постоянны даже на самых чистых пробах: 800 Дж/(кг·К), или 0,191 кал/(г·град) и 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град) соответственно;
  • прозрачен для длинноволнового ИК-излучения, что используется в инфракрасной оптике;
  • диэлектрическая проницаемость – 1,17;
  • твердость по шкале Мооса – 7.

Электрические свойства неметалла сильно зависят от примесей. В промышленности эту особенность используют, модулируя нужный тип полупроводника. При нормальной температуре кремний хрупок, но при нагревании выше 800 С возможна пластическая деформация.

Свойства аморфного кремния разительно отличаются: он сильно гигроскопичен, намного активнее вступает в реакцию даже при нормальной температуре.

Структура и химический состав, а также свойства кремния рассмотрены в видеоролике ниже:

Состав и структура

Кремний существует в двух аллотропных формах, одинаково устойчивых при нормальной температуре.

  • Кристаллический имеет вид темно-серого порошка. Вещество, хотя и имеет алмазоподобную кристаллическую решетку, является хрупким – из-за чересчур длинной связи между атомами. Интерес представляют его свойства полупроводника.
  • При очень высоких давлениях можно получить гексагональную модификацию с плотностью 2,55 г/куб. см. Однако эта фаза практического значения пока не нашла.
  • Аморфный – буро-коричневый порошок. В отличие от кристаллической формы намного активнее вступает в реакцию. Связано это не столько с инертностью первой формы, сколько с тем, что на воздухе вещество покрывается слоем диоксида.

Кроме того, необходимо учитывать и еще один тип классификации, связанный с величиной кристалла кремния, которые в совокупности образуют вещество. Кристаллическая решетка, как известно, предполагают упорядоченность не только атомов, но и структур, которые эти атомы образуют – так называемый дальний порядок. Чем он больше, тем более однородным по свойствам будет вещество.

  • Монокристаллический – образец представляет собой один кристалл. Структура его максимально упорядочена, свойства однородны и хорошо предсказуемы. Именно такой материал наиболее востребован в электротехнике. Однако он же относится к самому дорогому виду, поскольку процесс его получения сложен, а скорость роста низка.
  • Мультикристаллический – образец составляет некоторое количество крупных кристаллических зерен. Границы между ними формируют дополнительные дефектные уровни, что снижает производительность образца, как полупроводника и приводит к более быстрому износу. Технология выращивания мультикристалла проще, потому и материал дешевле.
  • Поликристаллический – состоит из большого количества зерен, расположенных хаотически относительно друг друга. Это наиболее чистая разновидность промышленного кремния, применяется в микроэлектронике и солнечной энергетике. Довольно часто используется в качестве сырья для выращивания мульти- и монокристаллов.
  • Аморфный кремний и в этой классификации занимает отдельную позицию. Здесь порядок расположения атомов удерживается только на самых коротких дистанциях. Однако в электротехнике он все же используется в виде тонких пленок.

Производство неметалла

Получить чистый кремний не так уж и просто, учитывая инертность его соединений и высокую температуру плавления большинства из них. В промышленности чаще всего прибегают к восстановлению углеродом из диоксида. Проводят реакцию в дуговых печах при температуре 1800 С. Таким образом получают неметалл чистотой в 99,9%, что для его применения недостаточно.

Полученный материал хлорируют с тем, чтобы получить хлориды и гидрохлориды. Затем соединения очищают всеми возможными методами от примесей и восстанавливают водородом.

Очистить вещество можно и за счет получения силицида магния. Силицид подвергают действию соляной или уксусной кислоты. Получают силан, а последний очищают различными способами – сорбционным, ректификацией и так далее. Затем силан разлагают на водород и кремний при температуре в 1000 С. В этом случае получают вещество с долей примеси 10 -8 –10 -6 %.

Применение вещества

Для промышленности наибольший интерес представляют электрофизические характеристики неметалла. Его монокристаллическая форма является непрямозонным полупроводником. Свойства его определяются примесями, что позволяет получать кристаллы кремния с заданными свойствами. Так, добавка бора, индия дает возможность вырастить кристалл с дырочной проводимостью, а введение фосфора или мышьяка – кристалл с электронной проводимостью.

  • Кремний в буквальном смысле слова служит основой современной электротехники. Из него изготавливают транзисторы, фотоэлементы, интегральные схемы, диоды и так далее. Причем функциональность прибора определяет практически всегда только приповерхностный слой кристалла, что обуславливает весьма специфические требования именно к обработке поверхности.
  • В металлургии технический кремний применяют и как модификатор сплавов – придает большую прочность, и как компонент – в , например, и как раскислитель – при производстве чугуна.
  • Сверхчистый и очищенный металлургический составляют основу солнечной энергетики.
  • Диоксид неметалла встречается в природе в очень разных формах. Его кристаллические разновидности – опал, агат, сердолик, аметист, горный хрусталь, нашли свое место в ювелирном деле. Не столь привлекательные внешне модификации – кремень, кварц, используются и в металлургии, и в строительстве, и в радиоэлектротехнике.
  • Соединение неметалла с углеродом – карбид, применяется и в металлургии, и в приборостроении, и в химической промышленности. Он является широкозональным полупроводником, отличается высокой твердостью – 7 по шкале Мооса, и прочностью, что и позволяет применять его в качестве абразивного материала.
  • Силикаты – то есть, соли кремниевой кислоты. Неустойчивы, легко разлагаются под действием температуры. Примечательность их в том, что они образуют многочисленные и разнообразные соли. А вот последние являются основой при производстве стекла, керамики, фаянса, хрусталя, и . Можно смело сказать, что современное строительство зиждется на разнообразных силикатах.
  • Стекло представляет здесь наиболее интересный случай. Основой его служат алюмосиликаты, но ничтожные примеси других веществ – обычно оксидов, придают материалу массу разных свойств, в том числе и цвет. – , фаянс, фарфор, по сути, имеет ту же формулу, хотя и с другим соотношением компонентов, и ее разнообразие тоже поразительно.
  • Неметалл обладает еще одной способностью: образует соединения по типу углеродных, в виде длинной цепочки из атомов кремния. Такие соединения носят название кремнийорганических. Сфера их применения не менее известна – это силиконы, герметики, смазки и так далее.

Кремний – очень распространенный элемент и имеет необыкновенно большое значение в очень многих сферах народного хозяйства. Причем активно используется не только само вещество, но все его разнообразные и многочисленные соединения.

Данное видео расскажет о свойствах и применении кремния:

Кремний (Si) – второй элемент основной (А) подгруппы 4 группы Периодической системы, учрежденной Дмитрием Ивановичем Менделеевым. Кремний очень распространен в природе, поэтому он занимает второе (после кислорода) место по распространенности. Так, без кремния и его соединений не существовало бы Земной коры, которая более чем на четверть состоит из соединений этого химического элемента. В чем же особенности кремния? Каковы формулы его соединений и их применение? Какие важнейшие вещества имеют в своем составе кремний? Попробуем разобраться.

Элемент кремний и его свойства

Кремний существует в природе в нескольких аллотропных модификациях – наиболее распространенными являются кремний в кристаллическом виде и аморфный кремний. Рассмотрим каждую из данных модификаций в отдельности.

Кристаллический кремний

Кремний в данной модификации является темно-серым достаточно твердым и хрупким веществом со стальным блеском. Такой кремний является полупроводником; его полезное свойство заключается в том, что, в отличие от металлов, его электропроводность увеличивается при повышении температуры. Температура плавления такого кремния составляет 1415 °С. К тому же, кристаллический кремний не способен растворяться в воде и различных кислотах.

Применение кремния и его соединений в кристаллической модификации невероятно многообразно. Например, кристаллический кремний входит в состав солнечных батарей, устанавливаемых на космических кораблях и крышах домов. Кремний является полупроводником и способен преобразовывать солнечную энергию в электрическую.

Помимо солнечных батарей, кристаллический кремний используется для создания многих электронных приборов и кремнистых сталей.

Аморфный кремний


Аморфный кремний – бурый/темно-коричневый порошок алмазоподобной структуры. В отличие от кристаллического кремния, данная аллотропная модификация элемента не имеет строго упорядоченной кристаллической решетки. Несмотря на то, что аморфный кремний плавится при температуре, приблизительно равной 1400 °С, он является гораздо более активным по сравнению с кристаллическим. Аморфный кремний не проводит ток и имеет плотность около 2 г/см³.

Такой кремний чаще всего применяется в пищевой промышленности и при изготовлении лекарственных препаратов.

Химические свойства кремния

    Основное химическое свойство кремния – горение в кислороде, в результате которого образуется крайне распространенное соединение – оксид кремния:

Si + O2 → SiO2 (при температуре).

    При нагревании кремний как неметалл образует соединения с различными металлами. Такие соединения называются силицидами. Например:

2Ca + Si → Ca2Si (при температуре).

    Силициды, в свою очередь, без затруднений разлагаются при помощи воды или некоторых кислот. В результате данной реакции образуется особое водородное соединение кремния – газ силан (SiH4):

Mg2Si + 4HCl → 2MgCl2 + SiH4.

    Кремний также способен взаимодействовать с фтором (при нормальных условиях):

Si + 2F2 → SiF4.

    А при нагревании кремний взаимодействует с другими неметаллами:

Si + 2Cl2 → SiCl4 (400–600°).

3Si + 2N2 → Si3N4 (1000°).

Si + C → SiC (2000°).

    Также кремний, взаимодействуя со щелочами и водой, образует соли, называемые силикатами, и газ водород:

Si + 2KOH + H2O → K2SiO3 + H2.

Однако большинство химических свойств данного элемента мы разберем, рассматривая кремний и его соединения, так как именно они являются основными веществами, на которых основано применение и взаимодействие кремния с другими химическими элементами. Итак, какие же соединения кремния являются наиболее распространенными?

Соединения кремния


Ранее мы выяснили, каким элементом является кремний и какими свойствами он обладает. Теперь рассмотрим формулы соединений кремния.

При участии кремния образуется огромное количество различных соединений. Первое место по распространенности занимают кислородные соединения кремния. К данному разряду относится SiO2 и нерастворимая кремниевая кислота.

Кислотный остаток кремниевой кислоты образует различные силикаты (например, CaSiO3 или Al2O3 SiO2). В таких солях и представленных выше соединениях кремния с кислородом элемент имеет типичную для него степень окисления +4.

Также достаточно распространены соли кремния – силициды (Mg2Si, NaSi, CoSi) и соединения кремния с водородом (например, газ силан). Силан, как известно, самовоспламеняется на воздухе с возникновением ослепительной вспышки, а силициды легко разлагаются как при помощи воды, так и различных кислот.

Рассмотрим поподробнее кремний и его соединения, считающиеся самыми распространенными.

Диоксид кремния

Другое название данного оксида – кремнезем. Это твердое и тугоплавкое вещество, которое не растворяется в воде и кислотах и имеет атомную кристаллическую решетку. В природе оксид кремния образует такие минералы и драгоценные камни, как кварц, аметист, опал, агат, халцедон, яшма, кремень и некоторые другие.

Стоит отметить, что именно из кремния первобытные люди изготавливали свои орудия труда и охоты. Кремень положил начало так называемому каменному веку благодаря его повсеместной доступности и способности образовывать острые режущие края при сколе.

Именно оксид кремния делает прочными стебли таких растений, как камыши, тростники и хвощи, листья осоки и стебли злаков. В защитных наружных покровах некоторых животных также содержится кремнезем.

К тому же, он лежит в основе силикатного клея, благодаря которому создается силиконовый герметик и силиконовый каучук.

Химические свойства оксида кремния

Диоксид кремния взаимодействует с огромным количеством химических элементов – как металлов, так и неметаллов. Например:

    При высоких температурах кремнезем взаимодействует со щелочами, образуя при этом соли:

SiO2 + 2KOH → K2SiO3 + H2O (при температуре).

    Как типичный кислотный оксид, данное соединение дает силикаты в результате взаимодействия с оксидами различных металлов:

SiO2 + CaO → CaSiO3 (при температуре).

    Или с карбонатными солями:

SiO2 + K2CO3 → K2SiO3 + CO2 (при температуре).

    Одно из важнейших химических свойств диоксида кремния – это возможность получения из него чистого кремния. Это можно осуществить двумя способами – при взаимодействии диоксида с магнием или углеродом:

SiO2 + 2Mg → 2MgO + Si (при температуре).

SiO2 + 2C → Si + 2CO (при температуре)

Кремниевая кислота


Кремниевая кислота является очень слабой. Она нерастворима в воде и при реакциях образует студенистый осадок, который иногда способен заполнить весь объем раствора. Когда данная смесь высыхает, можно увидеть образовавшийся силикагель, который применяется как адсорбент (поглотитель других веществ).

Наиболее доступный и распространенный способ получения кремниевой кислоты можно выразить при помощи формулы:

K2SiO3 + 2HCl → 2KCl + H2SiO3↓.

Силициды

Рассматривая кремний и его соединения, очень важно сказать о таких его солях, как силициды. Такие соединения кремний образует с металлами, приобретая, как правило, при этом степень окисления -4. Однако такие металлы, как ртуть, цинк, бериллий, золото и серебро не способны взаимодействовать с кремнием и образовывать силициды.

Наиболее распространенными силицидами являются Mg2Si, Ca2Si, NaSi и некоторые другие.

Силикаты

Такие соединения, как силикаты занимают второе место по распространенности после диоксида кремния. Соли-силикаты считаются достаточно сложными веществами, так как имеют непростую структуру строения, а также они входят в состав большинства минералов и горных пород.

К наиболее распространенным в природе силикатам – алюмосиликатам – относят гранит, слюды, различные виды глин. Также известным силикатом является асбест, из которого изготавливаются огнестойкие ткани.

Применение кремния


В первую очередь, кремний применяется для получения материалов-полупроводников и кислотоупорных сплавов. Карбид кремния (SiC) часто используют для затачивания резцов станков и шлифовки ценных камней.

Из расплавленного кварца изготавливается устойчивую и крепкую кварцевую посуду.

Соединения кремния лежат в основе производства стекла и цемента.


Стекла отличаются друг от друга по составу, в котором обязательно присутствует кремний. Например, помимо оконных, существуют тугоплавкие, хрустальные, кварцевые, цветные, фотохромные, оптические, зеркальные и другие стекла.

При смешивании цемента с водой образуется особое вещество – цементный раствор, из которого впоследствии получают такой строительный материал, как бетон.

Производством этих веществ занимается силикатная промышленность. Помимо стекла и цемента, в силикатной промышленности получают кирпич, фарфор, фаянс и различные изделия из них.

Заключение

Итак, мы выяснили, что кремний является важнейшим химическим элементом, широко распространенным в природе. Кремний применяется при строительстве и художественной деятельности, а также незаменим для живых организмов. Многие вещества, начиная от простого стекла и заканчивая ценнейшим фарфором, имеют в своем составе кремний и его соединения.

Изучение химии позволяет познать окружающий наш мир и понять, что не все вокруг, даже самое великолепное и дорогое, настолько таинственно и загадочно, как могло показаться. Желаем успехов в научном познании и изучении такой прекрасной науки, как химия!

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Все галогениды кремния легко гидролизуются водой:

а также растворами щелочей:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Силициды активных металлов легко гидролизуются водой или разбавленными растворами кислот-неокислителей:

При этом образуется газ силан SiH 4 – аналог метана CH 4 .

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

Второй по распространённости элемент в земной коре после кислорода (27,6% по массе). Встречается в соединениях.

Аллотропия кремния

Известен аморфный и кристаллический кремний.

Кристаллический – тёмно-серое вещество с металлическим блеском, большая твёрдость, хрупок, полупроводник; ρ = 2,33 г/см 3 , t°пл. =1415°C; t°кип. = 2680°C.

Имеет алмазоподобную структуру и образует прочные ковалентные связи. Инертен.

Аморфный — бурый порошок, гигроскопичен, алмазоподобная структура, ρ = 2 г/см 3 , более реакционноспособен.

Получение кремния

1) Промышленность – нагревание угля с песком:

2C + SiO 2 t ˚ → Si + 2CO

2) Лаборатория – нагревание песка с магнием:

2Mg + SiO 2 t ˚ → Si + 2MgO

Химические свойства

Типичный неметалл, инертен.

Как восстановитель:

1) С кислородом

Si 0 + O 2 t ˚ → Si +4 O 2

2) С фтором (без нагревания)

Si 0 + 2F 2 → SiF 4 ­

3) С углеродом

Si 0 + C t ˚ → Si +4 C

(SiC — карборунд — твёрдый; используется для точки и шлифовки)

4) С водородом не взаимодействует.

Силан (SiH 4) получают разложением силицидов металлов кислотой:

Mg 2 Si + 2H 2 SO 4 → SiH 4 ­ + 2MgSO 4

5) С кислотами не реагирует олько с плавиковой кислотой Si +4 HF = SiF 4 +2 H 2 )

Растворяется только в смеси азотной и плавиковой кислот:

3Si + 4HNO 3 + 18HF → 3H 2 + 4NO­ + 8H 2 O

6) Со щелочами (при нагревании):

Si 0 + 2NaOH + H 2 O t˚ → Na 2 Si +4 O 3 + 2H 2 ­

Как окислитель:

7) С металлами (образуются силициды):

Si 0 + 2Mg t ˚ → Mg 2 Si -4

Применение кремния

Кремний широко используется в электронике как полупроводник. Добавки кремния к сплавам повышают их коррозионную стойкость. Силикаты, алюмосиликаты и кремнезем – основное сырье для производства стекла и керамики, а также для строительной промышленности.

Силан — SiH 4

Физические свойства: Бесцветный газ, ядовит, t°пл. = -185°C, t°кип. = -112°C.

Получение: Mg 2 Si + 4HCl → 2MgCl 2 + SiH 4­

Химические свойства:

1) Окисление: SiH 4 + 2O 2 t ˚ → SiO 2 + 2H 2 O

2) Разложение: SiH 4 → Si + 2H 2­

Оксид кремния (IV) — (SiO 2) n

SiO 2 — кварц, горный хрусталь, аметист, агат, яшма, опал, кремнезём (основная часть песка):

Кристаллическая решётка оксида кремния (IV) – атомная и имеет такое строение:

Al 2 O 3 2SiO 2 2H 2 O — каолинит (основная часть глины)

K 2 O Al 2 O 3 6SiO 2 — ортоклаз (полевой шпат)

Физические свойства: Твёрдое, кристаллическое, тугоплавкое вещество, t°пл.= 1728°C, t°кип.= 2590°C

Химические свойства:

Кислотный оксид. При сплавлении взаимодействует с основными оксидами, щелочами, а также с карбонатами щелочных и щелочноземельных металлов:

1) С основными оксидами:

SiO 2 + CaO t ˚ → CaSiO 3

2) Со щелочами:

SiO 2 + 2NaOH t ˚ → Na 2 SiO 3 + H 2 O

3) С водой не реагирует

4) С солями:

SiO 2 + CaCO 3 t˚ → CaSiO 3 + CO 2 ­

SiO 2 + K 2 CO 3 t˚ → K 2 SiO 3 + CO 2 ­

5) С плавиковой кислотой:

SiO 2 + 4HF t ˚ → SiF 4 ­ + 2H 2 O

SiO 2 + 6HF t ˚ → H 2 (гексафторкремниевая кислота) + 2H 2 O

(реакции лежат в основе процесса травления стекла).

Применение:

1. Изготовление силикатного кирпича

2. Изготовление керамических изделий

3. Получение стекла

Кремниевые кислоты

x SiO 2 y H 2 O

x = 1, y = 1 H 2 SiO 3 — метакремниевая кислота

x = 1, y = 2 H 4 SiO 4 — ортокремниевая кислота и т.д.

Физические свойства: H 2 SiO 3 — очень слабая (слабее угольной), непрочная, в воде малорастворима (образует коллоидный раствор), не имеет кислого вкуса.

Получение:

Действие сильных кислот на силикаты — Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ↓

Химические свойства:

При нагревании разлагается: H 2 SiO 3 t ˚ → H 2 O + SiO 2

Соли кремниевой кислоты — силикаты .

1) с кислотами

Na 2 SiO 3 +H 2 O+CO 2 =Na 2 CO 3 +H 2 SiO 3

2) с солями

Na 2 SiO 3 +CaCl 2 =2NaCl+CaSiO 3 ↓

3) Силикаты, входящие в состав минералов, в природных условиях разрушаются под действием воды и оксида углерода (IV) — выветривание горных пород:

(K 2 O Al 2 O 3 6SiO 2)(полевой шпат) + CO 2 + 2H 2 O → (Al 2 O 3 2SiO 2 2H 2 O)(каолинит (глина)) + 4SiO 2 (кремнезём (песок)) + K 2 CO 3

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство