Что такое математическая модель? Основы математических моделей

Что такое математическая модель? Основы математических моделей

вектор входных переменных, X= t ,

Y - вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель . Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

  1. аналитические;
  2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей .

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

  1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
  2. аппроксимационные задачи ( интерполяция , экстраполяция, численное интегрирование и дифференцирование ),
  3. задачи оптимизации,
  4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование .

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями , имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

  1. детерминированные,
  2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра .

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

  1. непрерывные,
  2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

  1. статические,
  2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между

Проследить динамику развития объекта, внутреннюю сущность соотношений его элементов и различные со­стояния в процессе проектирования можно только с по­мощью моделей, использующих принцип динамической аналогии, т. е. с помощью математических моделей.

Математическая модель - это система математиче­ских соотношений, описывающих изучаемый процесс или явление. Для составления математической модели мож­но использовать любые математические средства - тео­рию множеств, математическую логику, язык дифферен­циальных или интегральных уравнений. Процесс состав­ления математической модели называется математическим моделированием . Как и другие виды моделей, ма­тематическая модель представляет задачу в упрощен­ном виде и описывает только свойства и закономер­ности, которые наиболее важны для данного объекта или процесса. Математическая модель позволяет осуществ­лять многосторонний количественный анализ. Изменяя исходные данные, критерии, ограничения, каждый раз можно получать оптимальное по заданным условиям ре­шение и определять дальнейшее направление поиска.

Создание математических моделей требует от их раз­работчиков, кроме знания формально-логических мето­дов, тщательного анализа изучаемого объекта с целью строгого формулирования основных идей и правил, а также с целью выявления достаточного объема досто­верных фактических, статистических и нормативных данных.

Следует отметить, что все используемые в настоя­щее время математические модели относятся к предпи­сывающим . Цель разработки предписывающих моде­лей - указание направления поиска решения, в то время как цель разработки описывающих моделей - отражение действительных процессов мышления человека.

Достаточно широко распространена точка зрения, что с помощью математики можно получить только некото­рые числовые данные по изучаемому объекту или про­цессу. «Разумеется, многие математические дисциплины направлены на получение конечного численного резуль­тата. Но сводить математические методы только к зада­че получения числа - значит бесконечно обеднять мате­матику, обеднять возможность того могучего оружия, которое сегодня есть в руках исследователей…

Математическая модель, записанная на том или ином частном языке (например, дифференциальные уравне­ния), отражает определенные свойства реальных физиче­ских процессов. В результате анализа математических моделей мы получаем, прежде всего, качественные пред­ставления об особенностях изучаемых процессов, уста­навливаем закономерности, определяющие динамический ряд последовательных состояний, получаем возможность предсказать течение процесса и определять его количе­ственные характеристики».

Математические модели используются во многих известных способах моделирования. Среди них можно назвать разработку моделей, описывающих статическое и динамическое состояние объекта, оптимизационные модели.

Примером математических моделей, описывающих статическое и динамическое состояние объекта, могут служить различные методы традиционных расчетов конструкций. Процесс расчета, представленный в виде последовательности математических операций (алгоритм), позволяет сказать, что составлена математическая модель для расчета определенной конструкции.

В оптимизационных моделях присутствуют три элемента:

Целевая функция, отражающая принятый критерий качества;

Регулируемые параметры;

Налагаемые ограничения.

Все эти элементы должны быть описаны математически в виде уравнений, логических условий и т.д. Решение оптимизационной задачи представляет собой процесс поиска минимального (максимального) значения целевой функции при соблюдении заданных ограничений. Результат решения считается оптимальным, если функция цели достигает своего экстремального значения.

Пример оптимизационной модели – математическое описание критерия «длина связи» в методике вариантного проектирования промышленных зданий.

Целевая функция отражает общую взвешенную протяженность всех функциональных связей, которая должны стремиться к минимуму:

где – весовое значение связи элемента с ;

– длина связи между и элементами;

– общее число размещаемых элементов.

Поскольку площади размещаемых элементов помещений во всех вариантах проектного решения равны, то варианты отличаются один от другого только различными расстояниями между элементами и их расположением относительно друг друга. Следовательно, регулируемыми параметрами служат в данном случае координаты элементов, размещаемых на планах этажей.

Налагаемые ограничения на расположение элементов (в заранее фиксированном месте плана, у наружного периметра, друг над другом и т.д.) и на длину связей (значения длины связей между и ым элементами заданы жестко, заданы минимальные или максимальные пределы значений, заданы границы изменения значений) записываются формально.

Вариант считается оптимальным (по данному критерию), если значение функции цели, вычисленной для этого варианта, будет минимальным.

Разновидность математических моделей – экономико-математическая модель – представляет собой модель связи экономических характеристик и параметров системы.

Примером экономико-математических моделей служит математическое описание критериев затрат в упомянутой выше методике вариантного проектирования промышленных зданий. В математических моделях, полученных на основе использования методов математической статистики, отражена зависимость стоимости каркаса, фундаментов, земляных работ одноэтажных и многоэтажных промышленных зданий и их высоты, пролета и шага несущих конструкций.

По способу учета влияния случайных факторов на принятие решения математические модели подразделяются на детерминированные и вероятностные. Детерминированная модель не учитывает влияние случайных факторов в процессе функционирования системы и основана на аналитическом представлении закономерностей функционирования. Вероятностная (стохастическая) модель учитывает влияние случайных факторов в процессе функционирования системы и основана на статистической, т.е. количественной оценке массовых явлений, позволяющей принимать в расчет их нелинейность, динамику, случайные возмущения, описываемые разными законами распределения.

Используя приведенные выше примеры, можно сказать, что математическая модель, описывающая критерий «длина связей», относится к детерминированным, а математические модели, описывающие группу критериев «затраты», - к вероятностным моделям.

Лингвистические, семантические и информационные модели

Математические модели имеют очевидные достоинства, так как количественная оценка аспектов задачи дает ясное представление о приоритетах целей. Немаловажно, что специалист всегда может обосновать принятие того или иного решения, представив соответствующие численные данные. Однако полное математическое описание проектной деятельности невозможно, поэтому большинство задач, решаемых на начальной стадии архитектурно-строительного проектирования, относится к слабоструктурированным .

Одна из особенностей слабоструктурированных задач - словесное описание используемых в них критериев. Введение критериев, описанных на естественном языке (такие критерии называют лингвистическими ), позволяет использовать менее сложные методы для поиска оптимальных проектных решений. При наличии таких критериев проектировщик принимает решение на основании привычных, не вызывающих сомнения выражениях целей.

Содержательное описание всех аспектов задачи вносит систематизацию в процесс ее решения, с одной стороны, а с другой, значительно облегчает работу специалистов, которые без изучения соответствующих разделов математики могут более рационально решать свои профессиональные задачи. На рис. 5.2 приведена лингвистическая модель , описывающая возможности создания условий для естественной вентиляции в различных вариантах планировочных решений хлебозавода.

Другие преимущества содержательного описания проблем заключаются в следующем:

Возможность описания всех критериев, которыми определяется эффективность проектного решения. При этом важно, что в описание могут быть введены слож­ные понятия и в поле зрения специалиста наряду с ко­личественными, измеряемыми факторами попадут и ка­чественные, не измеряемые. Таким образом, на момент принятия решения будет использована вся субъективная и объективная информация;


Рис. 5.2 Описание содержания критерия «вентиляция» в виде лингвистической модели

Возможность однозначной оценки степени достижения цели в вариантах по данному признаку на основе фор­мулировок, принятых специалистами, что обеспечивает достоверность полученной информации;

Возможность учета неопределенности, связанной с не­полным знанием всех последствий принимаемых реше­ний, а так же информации прогнозного характера.

К моделям, которые используют естественный язык для описания объекта исследования, относятся и семан­тические модели.

Семантическая модель - есть такое представление объекта, при котором отражается степень взаимосвязан­ности (близости) между различными составными частя­ми, аспектами, свойствами объекта. Под взаимосвязан­ностью понимается не относительное пространственное расположение, а связь по смыслу.

Так, в семантическом смысле связь между коэффи­циентом естественной освещенности и площадью света прозрачных ограждений будет представлена как более близкая, чем связь между оконными проемами и смеж­ными с ними глухими участками стены.

Совокупность отношений связанности показывает, что представляет собой каждый выделяемый в объекте эле­мент и объект в целом. В то же время семантическая модель отображает помимо степени связанности различ­ных сторон в объекте также содержание понятий. Элементарными моделями служат понятия, выраженные естественным языком.

Построение семантических моделей основывается на принципах, в соответствии с которыми понятия и связи не изменяются в течение всего времени использования модели; содержание одного понятия не переходит в дру­гое; связи между двумя понятиями имеют равное по отношению к ним и неориентированное взаимодействие.

Каждый анализ модели направлен на выбор элемен­тов модели, имеющих общее определенное качество. Это дает основание для построения алгоритма, учитывающе­го только непосредственные связи. При преобразовании модели в неориентированный граф ищется путь между двумя элементами, который прослеживает движение из одного элемента в другой, с использованием каждого элемента только один раз. Порядок следования элемен­тов называется последовательностью этих двух элемен­тов. Последовательности могут иметь разную длину. Самые короткие из них называются отношениями эле­ментов. Последовательность двух элементов существует и в том случае, если между ними существует непосред­ственная связь, но в таком случае не существует от­ношения.

В качестве примера семантической модели приведем описание планировки квартиры вместе с коммуникацион­ными связями. Понятие - это помещения квартиры. Не­посредственная связь означает функциональное соедине­ние двух помещений, например дверью (см. табл. 5.1).

Преобразование модели в форму неориентированного графа позволяет получить последовательность элементов (рис. 5.3).

Примеры последовательности, образованной между элементом 2 (ванная) и элементом 6 (кладовая), приведены в табл. 5.2. Как видно из таблицы, последовательность 3 пред­ставляет отношение этих двух элементов.

Таблица 5.1

Описание планировки квартиры


Рис. 5.3 Описание планировочного решения в виде неориентирован­ного графа

Что такое математическая модель?

Понятие математической модели.

Математическая модель - очень простое понятие. И очень важное. Именно математические модели связывают математику и реальную жизнь.

Говоря простым языком, математическая модель - это математическое описание любой ситуации. И всё. Модель может быть примитивной, может быть и суперсложной. Какая ситуация, такая и модель.)

В любом (я повторяю - в любом! ) деле, где нужно чего-нибудь посчитать да рассчитать - мы занимаемся математическим моделированием. Даже если и не подозреваем об этом.)

Р = 2·ЦБ + 3·ЦМ

Вот эта запись и будет математической моделью расходов на наши покупки. Модель не учитывает цвет упаковки, срок годности, вежливость кассиров и т.п. На то она и модель, а не реальная покупка. Но расходы, т.е. то, что нам надо - мы узнаем точно. Если модель правильная, конечно.

Представлять, что такое математическая модель полезно, но этого мало. Самое главное - уметь эти модели строить.

Составление (построение) математической модели задачи.

Составить математическую модель - это значит, перевести условия задачи в математическую форму. Т.е. превратить слова в уравнение, формулу, неравенство и т.д. Причём превратить так, чтобы эта математика строго соответствовала исходному тексту. Иначе у нас получится математическая модель какой-то другой, неведомой нам задачи.)

Говоря конкретнее, нужно

Задач в мире - бесконечное количество. Поэтому предложить чёткую пошаговую инструкцию по составлению математической модели любой задачи - невозможно.

Но можно выделить три основных момента, на которые нужно обратить внимание.

1. В любой задаче есть текст, как ни странно.) В этом тексте, как правило, имеется явная, открытая информация. Числа, значения и т.п.

2. В любой задаче имеется скрытая информация. Это текст, который предполагает наличие дополнительных знаний в голове. Без них - никак. Кроме того, математическая информация частенько скрывается за простыми словами и... проскакивает мимо внимания.

3. В любой задаче должно быть дана связь данных между собой. Эта связь может быть дана открытым текстом (что-то равно чему-то), а может быть и скрыта за простыми словами. Но простые и понятные факты частенько упускаются из виду. И модель никак не составляется.

Сразу скажу: чтобы применить эти три момента, задачу приходится читать (и внимательно!) несколько раз. Обычное дело.

А теперь - примеры.

Начнём с простой задачки:

Петрович вернулся с рыбалки и гордо предъявил семье улов. При ближайшем рассмотрении оказалось, что 8 рыбин родом из северных морей, 20% всех рыбин - из южных, а из местной реки, где рыбачил Петрович - нет ни одной. Сколько всего рыбин купил Петрович в магазине "Морепродукты"?

Все эти слова нужно превратить в какое-то уравнение. Для этого нужно, повторюсь, установить математическую связь между всеми данными задачи.

С чего начинать? Сначала вытащим из задачи все данные. Начнём по порядочку:

Обращаем внимание на первый момент.

Какая здесь явная математическая информация? 8 рыбин и 20%. Не густо, да нам много и не надо.)

Обращаем внимание на второй момент.

Ищем скрытую информацию. Она здесь есть. Это слова: "20% всех рыбин ". Здесь нужно понимать, что такое проценты и как они считаются. Иначе задача не решается. Это как раз та дополнительная информация, которая должна быть в голове.

Здесь ещё имеется математическая информация, которую совершенно не видно. Это вопрос задачи: "Сколько всего рыбин купил..." Это ведь тоже какое-то число. И без него никакая модель не составится. Поэтому обозначим это число буквой "х". Мы пока не знаем, чему равен икс, но такое обозначение очень нам пригодится. Подробнее, что брать за икс и как с ним обращаться, написано в уроке Как решать задачи по математике? Вот так сразу и запишем:

х штук - общее количество рыб.

В нашей задаче южные рыбы даны в процентах. Надо их перевести в штуки. Зачем? Затем, что в любой задаче модели надо составлять в однотипных величинах. Штуки - так всё в штуках. Если даны, скажем часы и минуты - всё переводим во что-нибудь одно - или только часы, или только минуты. Не суть важно во что. Важно, чтобы все величины были однотипными.

Возвращаемся к раскрытию информации. Кто не знает, что такое процент, никогда не раскроет, да... А кто знает, тот сразу скажет, что проценты здесь от общего числа рыб даны. А нам это число неизвестно. Ничего не выйдет!

Общее количество рыб (в штуках!) мы не зря буквой "х" обозначили. Посчитать южных рыб в штуках не получится, но записать-то мы сможем? Вот так:

0,2·х штук - количество рыб из южных морей.

Вот теперь мы скачали всю информацию с задачи. И явную, и скрытую.

Обращаем внимание на третий момент.

Ищем математическую связь между данными задачи. Эта связь настолько проста, что многие её не замечают... Такое часто бывает. Здесь полезно просто записать собранные данные в кучку, да и посмотреть, что к чему.

Что у нас есть? Есть 8 штук северных рыб, 0,2·х штук - южных рыб и х рыб - общее количество. Можно связать эти данные как-то воедино? Да легко! Общее количество рыб равно сумме южных и северных! Ну кто бы мог подумать...) Вот и записываем:

х = 8 + 0,2х

Вот это уравнение и будет математической моделью нашей задачи.

Прошу заметить, что в этой задаче нас не просят ничего складывать! Это мы сами, из головы, сообразили, что сумма южных и северных рыб даст нам общее количество. Вещь настолько очевидная, что проскакивает мимо внимания. Но без этой очевидности математическую модель не составить. Вот так.

Теперь уже можно применить всю мощь математики для решения этого уравнения). Именно для этого и составлялась математическая модель. Решаем это линейное уравнение и получаем ответ.

Ответ: х=10

Составим математичесскую модель ещё одной задачки:

Спросили Петровича: "А много ли у тебя денег?" Заплакал Петрович и отвечает: "Да всего чуть-чуть. Если я потрачу половину всех денег, да половину остатка, то всего-то один мешок денег у меня и останется..." Сколько денег у Петровича?

Опять работаем по пунктам.

1. Ищем явную информацию. Тут её не сразу и обнаружишь! Явная информация - это один мешок денег. Есть ещё какие-то половинки... Ну, это во втором пункте разберём.

2. Ищем скрытую информацию. Это половинки. Чего? Не очень понятно. Ищем дальше. Есть ещё вопрос задачи: "Сколько денег у Петровича?" Обозначим количество денег буквой "х" :

х - все деньги

И вновь читаем задачу. Уже зная, что у Петровича х денег. Вот тут уже и половинки сработают! Записываем:

0,5·х - половина всех денег.

Остаток будет тоже половина, т.е. 0,5·х. А половину от половины можно записать так:

0,5·0,5·х = 0,25х - половина остатка.

Теперь вся скрытая информация выявлена и записана.

3. Ищем связь между записанными данными. Здесь можно просто читать страдания Петровича и записывать их математически):

Если я потрачу половину всех денег ...

Запишем этот процесс. Всех денег - х. Половина - 0,5·х . Потратить - это отнять. Фраза превращается в запись:

х - 0,5·х

да половину остатка...

Отнимем ещё половину остатка:

х - 0,5·х - 0,25х

то всего-то один мешок денег у меня и останется...

А вот и равенство нашлось! После всех вычитаний один мешок денег остаётся:

х - 0,5·х - 0,25х = 1

Вот она, математическая модель! Это опять линейное уравнение, решаем, получаем:

Вопрос на соображение. Четыре - это чего? Рубля, доллара, юаня? А в каких единицах у нас деньги в математической модели записаны? В мешках! Значит, четыре мешка денег у Петровича. Тоже неплохо.)

Задачки, конечно, элементарные. Это специально, чтобы уловить суть составления математической модели. В некоторых задачах может быть гораздо больше данных, в которых легко запутаться. Это часто бывает в т.н. компетентностных задачах. Как вытаскивать математическое содержание из кучи слов и чисел показано на примерах

Ещё одно замечание. В классических школьных задачах (трубы заполняют бассейн, куда-то плывут катера и т.п.) все данные, как правило, подобраны очень тщательно. Там выполняются два правила:
- информации в задаче хватает для её решения,
- лишней информации в задаче не бывает.

Это подсказка. Если осталась какая-то неиспользованная в математической модели величина - задумайтесь, нет ли ошибки. Если данных никак не хватает - скорее всего, не вся скрытая информация выявлена и записана.

В компетентностных и прочих жизненных задачах эти правила строго не соблюдаются. Нету подсказки. Но и такие задачи можно решать. Если, конечно, потренироваться на классических.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Четыре седьмых класса.

В 7А учатся 15 девочек и 13 мальчиков,

в 7Б - 12 девочек и 12 мальчиков,

в 7В - 9 девочек и 18 мальчиков,

в 7Г - 20 девочек и 10 мальчиков.

Если нам нужно ответить на вопрос, сколько учеников в каждом из седьмых классов, то нам 4 раза придется осуществлять одну и ту же операцию сложения:

в 7А 15 + 13 = 28 учеников;
в 7Б 12 +12 = 24 ученика;
в 7В 9 + 18 = 27 учеников;
в 7Г 20 + 10 = 30 учеников.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Математические модели

Математическая модель - приближенное опи сание объекта моделирования, выраженное с помо щью математической символики.

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математиче ская модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического мо делирования изображены на рисунке. Первый этап - определение целей моделирования. Эти цели могут быть различными:

  1. модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия
    с окружающим миром (понимание);
  2. модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
  3. модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, "вдруг" начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. "Формализа ция и моделирование" ).

Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, - в зависимости от характера задачи и склонностей программиста.

Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

  • дескриптивные (описательные) модели;
  • оптимизационные модели;
  • многокритериальные модели;
  • игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3-4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй - выполнение проекта учащимися под руководством учителя. Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

  • с помощью табличного процессора (как правило, MS Excel);
  • путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual
    Basic for Application и т.п.);
  • с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Задание :

  • Составить схему ключевых понятий.

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство