Способы охраны атмосферы. Технические и технологические средства защиты атмосферы от промышленных загрязнений. Оборудование для очистки выбросов

Способы охраны атмосферы. Технические и технологические средства защиты атмосферы от промышленных загрязнений. Оборудование для очистки выбросов

  1. Атмосфера
  2. Контроль газовых смесей
  3. Парниковый эффект
  4. Киотский протокол
  5. Средства защиты
  6. Защита атмосферы
  7. Средства защиты
  8. Сухие пылеуловители
  9. Мокрые пылеуловители
  10. Фильтры
  11. Электрофильтры

Атмосфера

Атмосфера - газовая оболочка небесного тела, удерживаемая около него гравитацией.

Глубина атмосферы некоторых планет, состоящих в основном из газов (газовые планеты), может быть очень большой.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза.

Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Основные загрязнители атмосферного воздуха

Основными загрязнителями атмосферного воздуха, образующимися как в процессе хозяйственной деятельности человека, так и в результате природных процессов, являются:

  • диоксид серы SO2,
  • диоксид углерода CO2,
  • оксиды азота NOx,
  • твердые частицы – аэрозоли.

Доля этих загрязнителей составляет 98% в общем объеме выбросов вредных веществ.

Помимо этих основных загрязнителей, в атмосфере наблюдается еще более 70 наименований вредных веществ: формальдегид, фенол, бензол, соединения свинца и других тяжелых металлов, аммиак, сероуглерод и др.

Основные загрязнители атмосферы

Источники загрязнения атмосферы проявляются практически во всех видах хозяйственной деятельности человека. Их можно разделить на группы стационарных и подвижных объектов.

К первым относятся промышленные, сельскохозяйственные и другие предприятия, ко вторым - средства наземного, водного и воздушного транспорта.

Среди предприятий наибольший вклад в загрязнение атмосферы вносят:

  • теплоэнергетические объекты (тепловые электрические станции, отопительные и производственные котельные агрегаты);
  • металлургические, химические и нефтехимические заводы.

Загрязнение атмосферы и контроль ее качества

Контроль атмосферного воздуха осуществляется с целью установления соответствия его состава и содержания компонентов требованиям охраны окружающей среды и здоровья человека.

Контролю подлежат все источники образования загрязнений, поступающих в атмосферу, их рабочие зоны, а также зоны влияния этих источников на окружающую среду (воздух населенных пунктов, мест отдыха и др.)

Комплексный контроль качества включает следующие измерения:

  • химический состав атмосферного воздуха по ряду наиболее важных и значимых компонентов;
  • химический состав атмосферных осадков и снежного покрова
  • химический состав пылевых загрязнений;
  • химический состав жидкофазных загрязнений;
  • содержание в приземном слое атмосферы отдельных компонентов газовых, жидкофазных и твердофазных загрязнений (в том числе токсических, биологических и радиоактивных);
  • радиационный фон;
  • температура, давление, влажность атмосферного воздуха;
  • направление и скорость ветра в приземном слое и на уровне флюгера.

Данные этих измерений позволяют не только оперативно оценивать состояние атмосферы, но и прогнозировать неблагоприятные метеорологические условия.

Контроль газовых смесей

Контроль состава газовых смесей и содержания в них примесей основан на сочетании качественного и количественного анализа. При качественном анализе выявляют присутствие в атмосфере специфических особо опасных примесей без определения их содержания.

Применяют органолептический, индикаторный методы и метод тест-проб. Органолептическое определение основано на способности человека узнавать запах специфического вещества (хлор, аммиак, сера и др.), изменение окраски воздуха, чувствовать раздражающее действие примесей.

Экологические последствия загрязнения атмосферы

К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

  • возможное потепление климата (парниковый эффект);
  • нарушение озонового слоя;
  • выпадение кислотных дождей;
  • ухудшение здоровья.

Парниковый эффект

Парниковый эффект – это повышение температуры нижних слоев атмосферы Земли по сравнению с эффективной температурой,т.е. температурой теплового излучения планеты, наблюдаемого из космоса.

Киотский протокол

В декабре 1997 г. на встрече в Киото (Япония), посвященной глобальному изменению климата, делегатами из более чем 160 стран была принята конвенция, обязывающая развитые страны сократить выбросы СО2. Киотский протокол обязывает 38 индустриально развитых стран сократить к 2008–2012 г.г. выбросы СО2 на 5 % от уровня 1990 г.:

  • Европейский союз должен сократить выбросы СО2 и других тепличных газов на 8 %,
  • США – на 7%,
  • Япония – на 6 %.

Средства защиты

Основными путями снижения и полной ликвидации загрязнения атмосферы служат:

  • разработка и внедрение очистных фильтров на предприятиях,
  • использование экологически безопасных источников энергии,
  • использование безотходной технологии производства,
  • борьба с выхлопными газами автомобилей,
  • озеленение городов и поселков.

Очистка промышленных отходов не только предохраняет атмосферу от загрязнений, но и дает дополнительное сырье и прибыли предприятиям.

Защита атмосферы

Один из способов предохранения атмосферы от загрязнения - переход на новые экологически безопасные источники энергии. Например, строительство электростанций, использующих энергию приливов и отливов, тепло недр, применение гелиоустановок и ветряных двигателей для получения электроэнергии.

В 1980-е годы перспективным источником энергии считались атомные электростанции (АЭС). После чернобыльской катастрофы число сторонников широкого использования атомной энергии уменьшилось. Эта авария показала, что атомные электростанции требуют повышенного внимания к системам их безопасности. Альтернативным источником энергии академик А. Л. Яншин, например, считает газ, которого в России в перспективе можно добывать около 300 трлн кубометров.

Средства защиты

  • Очистка технологических газовых выбросов от вредных примесей.
  • Рассеивание газовых выбросов в атмосфере. Рассеивание осуществляется с помощью высоких дымовых труб (высотой более 300 м). Это временное, вынужденное мероприятие, которое осуществляется вследствие того, что существующие очистные сооружения не обеспечивают полной очистки выбросов от вредных веществ.
  • Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Санитарно-защитная зона (СЗЗ) – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина СЗЗ устанавливается в зависимости от класса производства, степени вредности и количества выделенных в атмосферу веществ (50–1000 м).

Архитектурно-планировочные решения – правильное взаимное размещение источников выбросов и населенных мест с учетом направления ветров, сооружение автомобильных дорог в обход населенных пунктов и др.

Оборудование для очистки выбросов

  • устройства для очистки газовых выбросов от аэрозолей (пыли, золы, сажи);
  • устройства для очистки выбросов от газо- и парообразных примесей (NO, NO2, SO2, SO3 и др.)

Сухие пылеуловители

Сухие пылеуловители предназначены для грубой механической очистки от крупной и тяжелой пыли. Принцип работы – оседание частиц под действием центробежной силы и силы тяжести. Широкое распространение получили циклоны различных видов: одиночные, групповые, батарейные.

Мокрые пылеуловители

Мокрые пылеуловители характеризуются высокой эффективностью очистки от мелкодисперсной пыли размером до 2 мкм. Работают по принципу осаждения частиц пыли на поверхность капель под действием сил инерции или броуновского движения.

Запыленный газовый поток по патрубку 1 направляется на зеркало жидкости 2, на котором осаждаются наиболее крупные частицы пыли. Затем газ поднимается навстречу потоку капель жидкости, подаваемой через форсунки, где происходит очистка от мелких частиц пыли.

Фильтры

Предназначены для тонкой очистки газов за счет осаждения частиц пыли (до 0,05 мкм) на поверхности пористых фильтрующих перегородок.

По типу фильтрующей загрузки различают тканевые фильтры (ткань, войлок, губчатая резина) и зернистые.

Выбор фильтрующего материала определяется требованиями к очистке и условиями работы: степень очистки, температура, агрессивность газов, влажность, количество и размер пыли и т.д.

Электрофильтры

Электрофильтры – эффективный способ очистки от взвешенных частиц пыли (0,01 мкм), от масляного тумана.

Принцип действия основан на ионизации и осаждении частиц в электрическом поле. У поверхности коронирующего электрода происходит ионизация пылегазового потока. Приобретая отрицательный заряд, частицы пыли движутся к осадительному электроду, имеющему знак, противоположный заряду коронирующего электрода. По мере накопления на электродах частицы пыли падают под действием силы тяжести в сборник пыли или удаляются встряхиванием.

Способы очистки от газо- и парообразных примесей

Очистка от примесей путем каталитического превращения. С помощью этого метода превращают токсичные компоненты промышленных выбросов в безвредные или менее вредные вещества путем введения в систему катализаторов (Pt, Pd, Vd):

  • каталитическое дожигание СО до СО2;
  • восстановление NОx до N2.

Абсорбционный метод основан на поглощении вредных газообразных примесей жидким поглотителем (абсорбентом). В качестве абсорбента, например, используют воду для улавливания таких газов как NH3, HF, HCl.

Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов – твердых тел с ультрамикроскопической структурой (активированный уголь, цеолиты, Al2O3.

Воздух жилых помещений загрязняется продуктами сгорания природного газа испарениями растворителей моющих средств древесностружечных конструкций а также токсичными веществами поступающими в жилые помещения с вентиляционным воздухом. Много загрязняющих веществ поступает в атмосферный воздух от энергетических установок работающих на углеводородном топливе то есть на бензине керосине дизельном топливе и так далее. Однако кроме них в атмосферу выбрасываются и вредные вещества такие как оксид углерода оксиды серы азота соединения...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


31. Средства защиты атмосферы

Окружающий человека атмосферный воздух непрерывно подвергается загрязнению. Воздух производственных помещений загрязняется выбросами технологического оборудования. Воздух промышленных площадок и населенных пунктов загрязняется выбросами цехов, теплоэлектростанций, транспортных средств и других источников.

Воздух жилых помещений загрязняется продуктами сгорания природного газа, испарениями растворителей, моющих средств, древесно-стружечных конструкций, а также токсичными веществами, поступающими в жилые помещения с вентиляционным воздухом.

Много загрязняющих веществ поступает в атмосферный воздух от энергетических установок, работающих на углеводородном топливе, то есть на бензине, керосине, дизельном топливе и так далее.

Основными источниками загрязнения атмосферы являются транспортные средства с двигателями внутреннего сгорания и тепловые электрические станции. Основные компоненты, выбрасываемые в атмосферу при сжигании различных видов топлива в энергоустановках, — нетоксичные диоксид углерода и водяной пар. Однако кроме них в атмосферу выбрасываются и вредные вещества, такие как оксид углерода, оксиды серы, азота, соединения свинца, сажа, углеводороды, в том числе канцерогенный бензапирен.

Автомобильный транспорт также является источником загрязнения атмосферы. Так как число автомобилей непрерывно возрастает, то растет и валовой выброс вредных продуктов в атмосферу. Автотранспорт относится к движущимся источникам загрязнения, широко встречающимся в жилых районах и местах отдыха.

Наибольшей токсичностью обладает выхлоп карбюраторных двигателей внутреннего сгорания за счет большого выброса оксида углерода, оксидов азота и углеводородов.

Дизельные двигатели внутреннего сгорания выбрасывают в больших количествах сажу, которая в чистом виде нетоксична. Однако частицы сажи, обладая высокой адсорбционной способностью, несут на своей поверхности частицы токсичных веществ. Сажа может длительное время находиться в воздухе, увеличивая время воздействия токсичных веществ на человека.

Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина неэтилированным.

Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете, при наземных испытаниях в процессе их производства или после ремонта, при хранении и транспортировании топлива.

При старте ракетные двигатели неблагоприятно воздействуют не только на приземный слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов.

В связи с развитием авиации и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства, существенно возрос общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5% токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше предельно допустимой концентрации.

Если концентрации вредных веществ в атмосфере превышают предельно допустимый уровень, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

  • вывод токсичных веществ из помещений общеобменной вентиляцией;
    • локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение;
    • локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;
    • очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере;
    • очистка отработавших газов энергоустановок, например двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители, туманоуловители, аппараты для улавливания паров и газов и аппараты многоступенчатой очистки.

Другие похожие работы, которые могут вас заинтересовать.вшм>

538. Средства защиты от электричества 4.58 KB
Средства защиты от электричества Защита от электричества в установках достигается применением систем защитного заземления зануления защитного отключения и других средств в том числе знаков безопасности и предупредительных плакатов и надписей. Основные мероприятия применяемые для защиты от статического электричества производственного происхождения включают методы уменьшающие интенсивность генерации зарядов и методы устраняющие заряды. В настоящее время создан комбинированный материал из нейлона и дакрона обеспечивающий защиту от...
541. Средства защиты литосферы 5.21 KB
Средства защиты литосферы Для защиты почв лесных угодий поверхностных и грунтовых вод от неорганизованного выброса твердых и жидких отходов в настоящее время широко используют сбор промышленных и бытовых отходов на свалках и полигонах. На полигонах производят также переработку промышленных отходов. Полигоны используют для обезвреживания и захоронения токсичных отходов промышленных предприятий и научных учреждений. Существует перечень отходов которые подлежат приему на полигоны например использованные органические растворители песок...
540. Средства защиты гидросферы 5.27 KB
Средства защиты гидросферы В машиностроении источниками загрязнений сточных вод являются производственные бытовые и поверхностные стоки. Концентрация указанных примесей в бытовых сточных водах зависит от степени их разбавления водопроводной водой. Основными примесями поверхностных сточных вод являются механические частицы например песок камень или пыль и нефтепродукты например бензин или керосин используемые в двигателях транспортных средств. При выборе схемы станции очистки и технологического оборудования необходимо знать расход...
1825. Методы и средства защиты информации 45.91 KB
Создать концепцию обеспечения информационной безопасности шинного завода, имеющего конструкторское бюро, бухгалтерский отдел, использующий систему “Банк-клиент”. В процессе производства используется система система антивирусной безопасности. Предприятие имеет удаленные филиалы.
542. Средства защиты от энергетических воздействий 5.23 KB
Средства защиты от энергетических воздействий При решении задач защиты от энергетических воздействий выделяют источник энергии приемник энергии и защитное устройство которое уменьшает до допустимых уровней поток энергии от источника к приемнику. В общем случае защитное устройство обладает способностями отражать поглощать и быть прозрачным по отношению к потоку энергии. Методы изоляции используют тогда когда источник и приемник энергии располагаются с разных сторон от защитного устройства. В основе методов поглощения лежит принцип...
537. Средства защиты от механического травмирования 5.22 KB
Средства защиты от механического травмирования К средствам защиты от механического травмирования относятся: предохранительные устройства; тормозные устройства; оградительные устройства; средства автоматического контроля и сигнализации; знаки безопасности; системы дистанционного управления. По характеру действия предохранительные устройства бывают блокировочными и ограничительными. Блокировочные устройства препятствуют проникновению человека в опасную зону. Тормозные устройства подразделяют на рабочие резервные стояночные...
535. Средства защиты оборудования от взрывов 5.04 KB
Средства защиты оборудования от взрывов Ни одно производство не обходится без использования систем повышенного давления например трубопроводов баллонов для хранения и перевозки сжатых сжиженных или растворенных газов и так далее. Любые системы повышенного давления всегда представляют потенциальную опасность. Существует множество причин разрушения или разгерметизации систем повышенного давления таких как старение систем нарушение технологического режима конструкторские ошибки изменение состояния среды неисправности в устройствах...
536. Средства защиты от тепловых воздействий 5.41 KB
Средства защиты от тепловых воздействий К коллективным средствам защиты от тепловых воздействий относятся: локализация тепловыделений; теплоизоляция горячих поверхностей; экранирование источников либо рабочих мест; воздушное душирование; радиационное охлаждение; мелкодисперсное распыление воды; общеобъемная вентиляция или кондиционирование воздуха. Воздушное душирование заключается в подаче воздуха в виде воздушной струи направленной на рабочее место. Охлаждающий эффект воздушного душирования зависит от разности температур тела...
544. Средства индивидуальной защиты при опасностях для здоровья 5.14 KB
Средства индивидуальной защиты На ряде предприятий существуют такие виды работ или условия труда при которых работающий может получить травму или иное воздействие опасное для здоровья. В этих случаях для защиты человека необходимо применять средства индивидуальной защиты. Для защиты рук при работах в гальванических цехах литейном производстве при механической обработке металлов древесины а также при погрузоразгрузочных работах необходимо использовать специальные рукавицы или перчатки. Средства защиты кожи необходимы при контакте с...
4688. Создание средства антивирусной защиты для ОС Android 23.2 KB
Электронные ресурсы Введение Целью выпускной квалификационной работы Создание средства антивирусной защиты для ОС ndroid является разработка и практическое внедрение средства защиты информации от угроз вирусного происхождения. Созданный антивирус должен защищать устройства на базе ОС ndroid от распространённых актуальных угроз и быть экономически окупаемым. Промежуточное положение между указанными системами занимает Google Аndroid.

Вредные примеси в отходящих газах могут быть представлены либо в виде аэрозолей, либо в газообразном или парообразном состоянии. В первом случае задача очистки состоит в извлечении содержащихся в промышленных газах взвешенных твердых и жидких примесей – пыли, дыма, капелек тумана и брызг. Во втором случае – нейтрализация газо- и парообразных примесей.

Очистка от аэрозолей осуществляется применением электрофильтров, методов фильтрации через различные пористые материалы, гравитационной или инерционной сепарации, способами мокрой очистки.

Очистка выбросов от газо- и парообразных примесей осуществляется ме­тодами адсорбции, абсорбции и химическими методами. Основное достоинство химических методов очистки - высокая степень очищения.

Основные способы очистки выбросов в атмосферу:

Обезвреживание выбросов путем перевода токсичных примесей, содержащихся в газовом потоке в менее токсичные или даже безвредные вещества – это химический способ.

Поглощение вредных газов и частиц всей массой специального вещества, называемого абсорбентом. Обычно газы поглощаются жидкостью, большей частью водой или соответствующими растворами. Для этого используют прогонку через пылеуловитель, действующий по принципу мокрой очистки, или применяют распыление воды на мелкие капли в так называемых скрубберах, где вода, распыляясь на капли и, осаждаясь, поглощает газы.

Очистка газов адсорбентами – телами с большой внутренней или наружной поверхностью. К ним относятся различные марки активных углей, силикагель, алюмогель.

Для очистки газового потока применяются окислительные процессы, а также процессы каталитического превращения.



Для очистки газов и воздуха от пыли применяются электрофильтры. Они представляют собой полую камеру, внутри которой расположены системы электродов. Электрическим полем притягиваются мелкие частицы пыли и сажи, а также ионы, загрязняющего вещества.

Сочетание различных способов очистки воздуха от загрязнений позволяет достигать эффекта очистки промышленных газообразных и твердых выбросов.

Гравитационные пылеулавливатели (рис. 6.1) являются наиболее простыми и дешевыми очистительными устройствами. Запыленный воздух подается через входной патрубок 1 , встретив на своем пути преграды 2 , уменьшает скорость. Частицы пыли в результате уменьшения скорости и под действием своего веса оседают в бункере 3 , а очищенный воздух выходит через патрубок 4 в атмосферу.

1 – входной патрубок; 2 – преграды; 3 – бункер; 4 – выходной патрубок

Рисунок 6.1 – Общая схема гравитационного пылеулавливателя

Гравитационные камеры применяют для оседания лишь крупной пыли. Частицы пыли меньше 10 мкм практически не оседают в этих камерах, а в интервале размера фракций 10 - 100 мкм эффективность оседания не превышает 40 %.

Скорость оседания крупных частиц пыли можно определить по формуле:

, м/с,

где r чп , r п – плотность соответственно материала частиц пыли и воздуха, мг/м 3 ;

k – коэффициент, который зависит от формы частиц, при квадратном поперечном сечении k = 1,1, при прямоугольном – 0,9;

h – толщина частиц, мм.

За время пребывания частицы в камере должно состояться ее оседание:

где t – время пребывания частицы пыли в камере, сек ;

H 0 высота оседания, м.

Длина гравитационной камеры с учетом фактической скорости движения запыленного воздуха должна быть не меньше длины, которая рассчитывается по формуле:

,

где d – диаметр частицы, мкм .

Инерционные пылеулавливатели (рис. 6.2) приобрели широкое применение под названием циклоны. На практике хорошо себя зарекомендовали цилиндровые (ЦН-П, ЦН-15, ЦН-24, ЦН-2) и конические (СК-ЦН-34, СК-СН-34-М, СДК-ЦН-33) циклоны. Принцип работы их такой. Поток запыленного воздуха вводится в циклон через входной патрубок 1 по касательной к внутренней поверхности корпуса, что предопределяет возвратно-поступательное движение вдоль корпуса к бункеру 3 . Под действием центробежной силы частицы пыли на стенке циклона образуют пылевой слой, который вместе с частью воздуха попадает в бункер.

1 – входной патрубок; 2 – верхнее отверстие; 3 – бункер

Рисунок 6.2 – Общая схема циклона

Величину центробежной силы определяют по формуле:

, Н ,

где А – постоянный безразмерный коэффициент;

r r – плотность частиц, мг/м 3 ;

d – диаметр частиц, мкм ;

V m – тангенциальная составляющая скорости движения частиц, м/с ;

r – радиус частиц, мкм ;

R – радиус циклона, м ;

п – постоянная, которая зависит от радиуса циклона и рабочей температуры;

Н ц – высота циклона, м .

Отделение частиц пыли от воздуха происходит при повороте воздушного потока в бункере на 180°. Освободившись от пыли, воздушный поток образует вихрь и выходит из бункера, давая начало выхода воздуха, который оставляет циклон через верхние отверстия 2.

Для нормальной работы циклона необходима герметичность бункера. В другом случае пыль с потоком воздуха будет выходить через верхние исходные отверстия (каналы). Для всех циклонов бункера должны иметь цилиндровую форму диаметром, который равняется 1,5D - для цилиндровых, и (1,1 - 1,2)D - для конических циклонов (D - внутренний диаметр циклона). Высота цилиндровой части бункера составляет 0,8D .

Для очистки значительных масс воздуха применяют батарейные циклоны БЦ-2; ЦРБ-150У и др.

Батарейные циклоны состоят из нескольких циклонных элементов малого диаметра, объединенных в одном корпусе, которые имеют общий подвод воздуха, а также общий бункер-собиратель.

Очистка воздуха в батарейных циклонах основана на использовании центробежных сил.

Коэффициент полезного действия циклонов зависит от концентрации и размеров частиц пыли. Средняя эффективность о чистки воздуха составляет 98 % при размере частиц 30 - 40 мкм , 80 % - при 10 мкм и 60 % - при 4 - 5 мкм .

Значительное распространение на предприятиях получают ротационные, противопотоковые ротационные и радиальные пылеулавливатели.

Хорошо себя зарекомендовали на предприятиях тканевые пылеулавливатели (рис. 6.3), применяются для средней и тонкой одноступенчатой очистки воздуха от мелкой сухой пыли (при начальной запыленности более 200 мг/м 3 ). При очень большой запыленности воздуха (более 5000 мг/м 3 ) тканевые пылеулавливатели используют как вторичные степени очистки.

Тканевый пылеулавливатель состоит из разборного металлического корпуса 5 , разделенного на несколько вертикальных перегородок. В каждой секции располагаются цилиндровые рукава-фильтры 6 из вельвета, фланели или сукна. Тканевые фильтры характеризуются высокой эффективностью очистки воздуха от пороха (98 % и выше).

Принцип работы тканевого пылеулавливателя такой. Запыленный воздух попадает воздуховодом 1 в воздухораспределительную коробку бункера 7 , откуда поступает в рукава 6 . Пройдя фильтрацию, воздух подается в межрукавное пространство, а затем в коллектор 4 . Пыль оседает на внутренней поверхности рукавов, откуда удаляется с помощью струшивающего механизма 3 или продувается потоком воздуха от специального вентилятора через канал 2 . Пыль из рукавов попадает в бункер 7 , откуда с помощью шнека 8 транспортируется за пределы циклона.

Одним из наилучших видов очистки воздуха от пыли и тумана является электрическая очистка . Этот процесс очистки построен на ударной ионизации воздуха в зоне коронирующего разряда, передачи заряда ионов частицами пыли, оседании их на осаждающих и коронирующих электродах электрических пылеулавливателей (рис. 6.4).

Электрические пылеулавливатели нашли широкое применение для очистки воздуха от очень мелких частиц пыли размером 0,01 мкм и меньше. Они разделяются на одноступенчатые и двухступенчатые. Питаются постоянным током высокого напряжения - 60 - 100 кВ.

В состав электрического пылеулавливателя входят: входной патрубок 1 , осаждающий 2 и коронирующий 3 электроды, изолятор 4 , исходящий патрубок 5 и бункер 6.

Основными силами, которые предопределяют движение частиц пыли к осаждающему электроду, являются: аэродинамические силы, силы притяжения и силы давления электрического "ветра".

Следовательно, при подаче запыленного воздуха через входной патрубок 1 происходит заряжение частиц пыли, которые двигаются к осаждающему электроду 2 под воздействием аэродинамических и электрических сил, а положительно заряженные частицы пыли оседают на негативном коронирующем электроде 3 . Поскольку объем внешней зоны коронирующего разряда намного превышает объем внутренней, то большинство частиц пыли заряжается отрицательно. Поэтому основная масса пыли оседает на положительном электроде (стенках корпуса пылеулавливателя), а лишь относительно незначительная - на отрицательном коронирующем электроде. При этом особое значение приобретает электрическое сопротивление слоев пыли.

Пыль с малым удельным электрическим сопротивлением (р < 104 Ом∙см 3 ) при прикосновении к электродам мгновенно теряет свой заряд и приобретает заряд, который отвечает знаку электрода; после чего между электродом и частицами пыли возникает сила отталкивания. Этой силе противодействует лишь сила адгезии, но если она недостаточна, то резко уменьшается эффективность очистки. Пыль со значительным электрическим сопротивлением тяжелее улавливается в электрофильтрах, поскольку разрядка частиц пороха проходит медленно. Поэтому в реальных условиях с целью снижения электрического сопротивления этих частиц увлажняют запорошенный воздух перед подачей, его в фильтр, увеличив, таким образом, эффективность очистки. Именно поэтому в промышленности используют несколько типичных конструкций сухих и мокрых пылеулавливателей. Электроды сухих пылеулавливателей периодически очищают струшивающими механизмами, а мокрых – подогреванием водяным паром.

Инженерная практика удостоверяет, что существующие пылеочистительные устройства не всегда обеспечивают необходимую очистку воздуха от пыли. Известно, что чем меньше частицы пыли, тем тяжелее их улавливать, а оседание частиц размером меньше 1 мкм становится практически невозможным. Поэтому в промышленности часто применяют метод акустической коагуляции, который базируется на увеличении размеров и массы частиц пороха под действием ультразвуковых колебаний.

На рис. 6.5 приведена схема форсуночного скруббера , который является разновидностью скруббера Вентури. Принцип работы его заключается в следующем. Воздушный поток по патрубку 3 подается на зеркало воды, где оседают самые крупные частицы пыли. Мелкодисперсная пыль, распределяясь по всему сечению корпуса 1 , поднимается вверх навстречу потоку капель, который подается в скруббер через форсуночные пояса 2 . Эффективность очистки в форсуночных скрубберах невысокая (0,6 - 0,7).

Центробежные скрубберы батарейного типа (рис. 6.6) применяют для мокрой очистки нетоксичных и невзрывоопасных воздушных потоков от пыли. Принцип работы таких пылеулавливателей заключается в следующем.

При подаче запыленного воздуха через входной патрубок 5 частицы пыли откидываются на пленку жидкости 2 центробежными силами, которые возникают при вращении воздушного потока в скрубберы за счет тангенциального размещения входного патрубка. Пленка жидкости толщиной не меньше 0,3 мм образуется подачей воды через сопло 1 и непрерывно стекает вниз, затягивая частицы пыли в бункер 4 . Эффективность очистки воздуха в таких скрубберах зависит от диаметра их корпуса, скорости воздуха во входном патрубке и дисперсности пыли.

На предприятиях находят применение пять основных методов очищения атмосферного воздуха от паров растворителей, разбавителей (ацетона, бензола, ксилола толуола, формальдегида, аммиака и тому подобное), газов и других вредных веществ, а именно: абсорбция; адсорбция; хемосорбция; термическая нейтрализация; каталитическое обезвреживание и тому подобное.

Абсорбцию часто называют в технике скрубберным процессом очистки. Принцип этого метода заключается в разделении газовоздушной смеси на составные части поглощения одного или нескольких газовых компонентов (абсорбентов) этой смеси жидким поглотителем (абсорбентом) с образованием раствора. Разрушающей силой при этом является ингредиент концентрации на границе фаз "газ-жидкость". Растворенный в жидкости абсорбент в результате диффузии, проникает во внутренние слои абсорбента. Данный процесс определяется величиной поверхности разделения фаз, турбулентностью потоков и коэффициентом диффузии. Главным условием при выборе абсорбента является растворимость в нем добытого компонента и ее зависимость от температуры и давления.

Так, например, для удаления из технологических выбросов аммиака, хлористого или фтористого водорода как поглотительную жидкость применяют воду, реже – серную кислоту или вязкое масло и др.

На рис. 6.7 приведена схема абсорбера. В абсорбер через патрубок 1 поступает загазованный воздух с максимальным парциальным давлением, проходит через слой жидкости 5 (в виде пузырьков) и выходит через патрубок 3 с минимальным парциальным давлением. Поглощающая жидкость против потока поступает в аппарат через разбрызгиватель 4 и выходит через патрубок 7 . Процесс абсорбции является гетерогенным, который протекает на границе "газ-жидкость", поэтому для его ускорения применяют разные устройства, которые увеличивают площадь контактного газа с жидкостью.

Для повышения эффективности, очистки воздуха от паров растворителей, разбавителей и газов применяют химические поглотители в виде водных растворов электролитов (кислот, солей, щелочей и тому подобное). Например, для очистки воздуха от диоксида серы как поглотителя (нейтрализатора) применяют раствор щелочи, в результате реакции получают соль:

SO 2 + 2NaOH = Na 2 SO 4 + H 2 O.

Каталитическая очистка. Для снижения токсичности двигателей внутреннего сгорания в транспортных средствах применяют нейтрализаторы выхлопных газов (рис. 6.8). Нейтрализатор - это дополнительное устройство, что вводится в выпускную систему двигателя для снижения токсичности выхлопных газов.

1 – входящий патрубок; 2 – патрубок для подачи жидкости;
3 – выходной патрубок; 4 – разбрызгиватель жидкости (поглотителя);
5 – поглотитель; 6 –опорная решетка; 7 – патрубок для отвода жидкости

Рисунок 6.7 –Схема абсорбера для очищения атмосферного воздуха от газов и легких компонентов лакокрасочных материалов

а – каталитический реактор: 1 – рекуператор; 2 – контактный пристрой;
3 – катализатор; 4 – зажигатель; 5 – подогреватель; б – установка для очищения воздуха от паров формальдегида: 1 – шеститарелочная колонка; 2 – измеритель аммиака, 3 – реактор; 4 – емкость; 5 – насос; 6 – сборник; 7 – вентилятор

Рисунок 6.8 –Схема установок для превращения токсичных компонентов
промышленных отходов в невредные вещества

В инженерной практике наиболее распространенными являются каталитические нейтрализаторы. Работа таких нейтрализаторов заключается в глубоком (90 %) окислении окиси углерода и углеводородов в широком интервале температур (250 - 800 °С) в присутствии влаги, соединений серы и свинца.

В нейтрализаторах используют, как правило, платиновые катализаторы, которые ускоряют различные реакции. Катализаторы такого типа характеризуются низкими температурами на начальной стадии эффективной работы, высокой температуростойкостью, долговечностью при высоких скоростях газового потока. Однако нейтрализаторы с платиновыми катализаторами являются достаточно дорогими. Поэтому в современных нейтрализаторах используют больше дешевые катализаторы, изготовленные из соединений Fe 2 O 3 , Со 3 О 4 , Сг 2 О 3 или МnО 2 . Такие нейтрализаторы работают в условиях больших температурных перепадов, вибрационных нагрузок и агрессивной среды.

На рис. 6.9 приведена схема каталитического нейтрализатора для автомобиля с дизельным двигателем внутреннего сгорания. Конструкция нейтрализатора имеет вид "трубы в трубе". Реактор состоит из внешней и внутренней перфорированных решеток, между которыми размещен слой гранулированного катализатора.

По характеру химических реакций нейтрализаторы такого типа делятся на: окислительные (воспламеняющиеся), обновительные, трехкомпонентные (бифункциональные).

1 – корпус; 2 – реактор; 3 – решетка; 4 – теплоизоляция; 5 – катализатор;
6 – фланец

Рисунок 6.9 – Схема каталитического нейтрализатора

Контрольные вопросы

1. Характеристика атмосферы (состав, строение, значение).

2. Источники загрязнения атмосферы и основные загрязняющие вещества.

3. Последствия загрязнения атмосферы (смог, кислотный дождь, парниковый эффект, разрушение озонового слоя).

4. Законодательная защита атмосферы.

5. Архитектурно-планировочные мероприятия по защите атмосферы.

6. Технологические и санитарно-технические мероприятия по охране атмосферы.

7. Основные способы и средства очистки выбросов в атмосферу.

8. Адсорбция и очистка выбросов в скрубберах.


Лекция 7. ЗАЩИТА ГИДРОСФЕРЫ

7.1 Характеристика гидросферы

7.1.1 Состояние водных ресурсов

7.1.2 Свойства воды, как лимитирующего фактора в экосистеме

7.2 Значение гидросферы

7.3 Источники и виды загрязнений водных ресурсов. Промышленные загрязнения

7.4 Последствия загрязнения гидросферы

7.5 Методы очистки гидросферы

7.5.1 Самоочищение морей и океанов

7.5.2 Очистка бытовых сточных вод

7.5.3 Очистка промышленных сточных вод

7.6 Выбор некоторых технических и технологических средств защиты гидросферы от промышленных загрязнений

7.7 Государственный мониторинг водных объектов и стандартизация в области охраны

Ключевые понятия и слова : гидросфера; эндогенные воды; фотолиз воды; осмотическое давление; круговорот воды в природе; флотация; биофильтр

7.1 Характеристика гидросферы

Вода – одно из самых удивительных веществ на нашей планете. Мы можем видеть её в твёрдом (снег, лёд), жидком (реки, моря) и газообразном (пары воды в атмосфере) состояниях. Вся живая природа не может обойтись без воды, которая присутствует во всех процессах обмена веществ. Все вещества, поглощаемые растениями из почвы, поступают в них только в растворённом состоянии. Чистой воды в природе нет. Но в экспериментальных условиях чистая вода легко перегревается и переохлаждается, при атмосферном давлении достигнуты температуры +200 и –33 о С.

Вообще вода – инертный универсальный растворитель, то есть растворитель, который не изменяется под воздействием веществ, которые растворяет. Как растворитель вода – диполь – с высоким моментом (1,87), под действием которого межатомные и межмолекулярные силы на поверхности тел, погруженных в воду, ослабевают в 80 раз. Это самый высокий показатель из всех известных соединений, который делает воду самым уникальным растворителем. Например: выпивая стакан воды в день, мы потребляем 0,1г стекла в течение жизни.

Именно в воде когда-то зародилась жизнь на нашей планете. Благодаря мировому океану происходит терморегуляция на нашей планете. Без воды не может жить человек. Наконец, в современном мире вода – один из важнейших факторов, определяющих размещение производственных сил, а очень часто и средств производства. Министерство обороны Англии разработало доктрину, согласно которой в ближайшей перспективе доступ к чистой питьевой воде может стать причиной вооруженных конфликтов.

Гидросфера – водная оболочка Земли, которая вращается вместе с Землёй и представляет собой совокупность океанов, морей, озер, рек, ледяных образований, подземных и атмосферных вод . Гидросфера объединяет все свободные воды, которые могут передвигаться под влиянием солнечной энергии и сил гравитации, переходить из одного состояния в другое. Воды земли находятся в непрерывном движении

7.1.1 Состояние водных ресурсов (по материалам 3 Всемирного водного форума, Киото, март 2003:

Общие запасы воды на Земле составляют около 1400 млн. км 3 . Из этого общего количества 97,5% приходится на соленую воду Мирового океана.

Пригодной для использования человеком является чуть более 2% всей воды, или около 28млн. км 3 . Из этой воды около: 69% приходится на воду в виде снега и льда Антарктики, Арктики и Гренландии; 30% приходится на подземные воды; 0,12% на поверхностные воды рек и озёр.

Пригодной для непосредственного использования приходится 9000 км 3 .

Потребляется 4000 км 3 .

Приток материковых вод в Мировой океан (ежегодно возобновляемые водные ресурсы) составляет 45 тыс. км 3 .

Географическое распределение потребления воды :

- Азия: 55% всей воды.

- Северная Америка: 19%.

- Европа: 9,2%.

- Африка: 4,7%.

- Южная Америка: 3,3%.

- Остальной мир: 8,8%.

По секторам : Сельское хозяйство – 70%, промышленность – 22%, домашнее хозяйство – 8%.

Потребление воды в день на одного человека (с учетом всех секторов хозяйства):

600л в Северной Америки и Японии;

250 – 350л в Европе;

10 –20л в странах около Сахары.

Среднемировой годовой забор воды из рек и подземных источников составляет 600м 3 на человека, из которых 50м 3 представляет питьевая вода или 137 л на человека в день.

Итак, важность воды и гидросферы – водной оболочки Земли, невозможно переоценить. Именно сейчас, когда темпы роста водопотребления огромны, когда некоторые страны уже испытывают острый дефицит пресной воды, особенно остро стоит вопрос снижения загрязнения пресной воды.

Для очистки газов от вредных газообразных примесей используют две группы методов - некаталитические и каталитические. Методы первой группы основаны на выведении примесей из газообразной смеси с помощью жидких абсорберов) и твердых (адсорберов) поглотителей. Методы второй группы заключаются в том, что вредные примеси вступают химическую реакцию и превращаются в безвредные вещества поверхности катализаторов. Еще более сложный и многоступенчатый процесс представляет собой очистка сточных вод.

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.

В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.

Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют :

  • - замену менее экологичных видов топлива экологичными;
  • - сжигание топлива по специальной технологии;
  • - создание замкнутых производственных циклов.

Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам:

  • 1) по абсорбируемому компоненту;
  • 2) по типу применяемого абсорбента;
  • 3) по характеру процесса - с циркуляцией и без циркуляции газа;
  • 4) по использованию абсорбента - с регенерацией и возвращением его в цикл (циклические) и без регенерации (не циклические);
  • 5) по использованию улавливаемых компонентов - с рекуперацией и без рекуперации;
  • 6) по типу рекуперируемого продукта;
  • 7) по организации процесса - периодические и непрерывные;
  • 8) по конструктивным типам абсорбционной аппаратуры.

Для физической абсорбции на практике применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей и щелочей, органические вещества и водные суспензии различных веществ.

Выбор метода очистки зависит от многих факторов; концентрации извлекаемого компонента в отходящих газах, объема и температуры газа, содержания примесей, наличия хемосорбентов, возможности использования продуктов рекуперации, требуемой степени очистки. Выбор производят на основании результатов технико-экономических расчетов.

Адсорбционные методы очистки газов используют для удаления из них газообразных и парообразных примесей. Методы основаны на поглощении примесей пористыми телами-адсорбентами. Процессы очистки проводят в периодических или непрерывных адсорберах. Достоинством методов является высокая степень очистки, а недостатком - невозможность очистки запыленных газов.

Каталитические методы очистки основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности твердых катализаторов. Очистке подвергаются газы, не содержащие пыли и катализаторных ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Их проводят в реакторах различной конструкции .

В рекуперационной технике наряду с другими методами для улавливания паров летучих растворителей используют методы конденсации и компримирования.

В основе метода конденсации лежит явление уменьшения давления насыщенного пара растворителя при понижении температуры. Смесь паров растворителя с воздухом предварительно охлаждают в теплообменнике, а затем конденсируют. Достоинствами метода являются простота аппаратурного оформления и эксплуатации рекуперационной установки. Однако проведение процесса очистки паровоздушных смесей методом конденсации сильно осложнено, поскольку содержание паров летучих растворителей в этих смесях обычно превышает нижний предел их взрываемости. К недостаткам метода относятся также высокие расходы холодильного агента и электроэнергии и низкий процент конденсации паров (выход) растворителей - обычно не превышает 70-90%. Метод конденсации является рентабельным лишь при содержании паров растворителя в подвергаемом очистке потоке 100 г/м 3 , что существенно ограничивает область применения установок конденсационного типа.

Метод компримирования базируется на том же явлении, что и метод конденсации, но применительно к парам растворителей, находящимся под избыточным давлением. Однако метод компримирования более сложен в аппаратурном оформлении, так как в схеме улавливания паров растворителей необходим компримирующий агрегат. Кроме того, он сохраняет все недостатки, присущие методу конденсации, и не обеспечивает возможность улавливания паров летучих растворителей при их низких концентрациях.

Термические методы (методы прямого сжигания) применяют для обезвреживания газов от легкоокисляемых токсичных, а также дурнопахнущих примесей. Методы основаны на сжигании горючих примесей в топках печей или факельных горелках. Преимуществом метода является простота аппаратуры, универсальность использования. Недостатки: дополнительный расход топлива при сжигании низкоконцентрированных газов, а также необходимость дополнительной абсорбционной или адсорбционной очистки газов после сжигания.

Следует отметить, что сложный химический состав выбросов и высокие концентрации токсичных компонентов заранее предопределяют многоступенчатые схемы очистки, представляющие собой комбинацию разных методов .

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы.

В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.

Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют:

Замену менее экологичных видов топлива экологичными;

Сжигание топлива по специальной технологии;

Создание замкнутых производственных циклов.

В первом случае применяют топливо с более низким баллом загрязнения атмосферы. При сжигании различных топлив такие показатели, как зольность, количество диоксида серы и оксидов азота в выбросах, могут сильно различаться между собой, поэтому введен суммарный показатель загрязнения атмосферы в баллах, который отражает степень вредного воздействия на человека. Так, для сланцев он равен 3,16, подмосковного угля - 2,02, экибастузского угля - 1,85, березовского угля - 0,50, природного газа - 0,04.

Сжигание топлива по особой технологии (рис. 4.2) осуществляется либо в кипящем (псевдоожиженном) слое, либо предварительной их газификацией.

Для уменьшения мощности выброса серы твердое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ (инертных или реакционно-способных). Твердые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости.

Рис. 4.2. Схема тепловой электростанции с использованием дожигания топочных газов и впрыскиванием сорбента: 1 - паровая турбина; 2 - горелка; 3 - бойлер; 4 - электроосадитель; 5 - генератор

Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твердых частиц в их выбросах будут минимальными.

Одним из перспективных способов защиты атмосферы от химических примесей является внедрение замкнутых производственных процессов, которые сводят к минимуму выбрасываемые в атмосферу отходы, вторично используя их и потребляя, т. е. превращая их в новые продукты.

  1. Классификация систем очистки воздуха и их параметры

По агрегатному состоянию загрязнители воздуха подразделяются на пыли, туманы и газопарообразные примеси. Промышленные выбросы, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной - твердые частицы или капельки жидкости.

Системы очистки воздуха от пыли (рис. 4.3) делятся на четыре основные группы: сухие и мокрые пылеуловители, а также электрофильтры и фильтры.

Рис. 4.3. Системы и методы очистки вредных выбросов

При повышенном содержании пыли в воздухе используют пылеуловители и электрофильтры. Фильтры применяют для тонкой очистки воздуха с концентрацией примесей менее 100 мг/м 3 .

Для очистки воздуха от туманов (например, кислот, щелочей, масел и др. жидкостей) используют системы фильтров, называемых туманоуловителями.

Средства защиты воздуха от газопарообразных примесей зависят от выбранного метода очистки. По характеру протекания физико-химических процессов выделяют метод абсорбции (промывка выбросов растворителями примеси), хемосорбции (промывка выбросов растворами реагентов, связывающих примеси химически), адсорбции (поглощение газообразных примесей за счет катализаторов) и термической нейтрализации. Все процессы извлечения из воздуха взвешенных частиц включают, как правило, две операции: осаждение частиц пыли или капель жидкости на сухих или смоченных поверхностях и удаление осадка с поверхностей осаждения. Основной операцией является осаждение, по ней собственно и классифицируются все пылеуловители. Однако вторая операция, несмотря на кажущуюся простоту, связана с преодолением ряда технических трудностей, часто оказывающих решающее влияние на эффективность очистки или применимость того или иного метода.

Выбор того или иного пылеулавливающего устройства, которое представляет систему элементов, включающую пылеуловитель, разгрузочный агрегат, регулирующее оборудование и вентилятор, предопределяется дисперсным составом улавливаемой частицы промышленной пыли. Поскольку частицы имеют разнообразную форму (шарики, палочки, пластинки, игла, волокна и т.д.), то для них понятие размера условно. В общем случае принято характеризовать размер частицы величиной, определяющей скорость ее осаждения, - седиментационным диаметром. Под ним подразумевают диаметр шара, скорость осаждения и плотность которого равны скорости осаждения и плотности частиц.

Для очистки выбросов от жидких и твердых примесей применяют различные конструкции улавливающих аппаратов, работающих по принципу:

Инерционного осаждения путем резкого изменения направления вектора скорости движения выброса, при этом твердые частицы под действием инерционных сил будут стремиться двигаться в прежнем направлении и попадать в приемный бункер;

Осаждения под действием гравитационных сил из-за различной кривизны траекторий движения составляющих выброса (газов и частиц), вектор скорости движения которого направлен горизонтально;

Осаждения под действием центробежных сил путем придания выбросу вращательного движения внутри циклона, при этом твердые частицы отбрасываются центробежной силой к сетке, так как центробежное ускорение в циклоне до тысячи раз больше ускорения силы тяжести, это позволяет удалить из выброса даже весьма мелкие частицы;

Механической фильтрации - фильтрации выброса через пористую перегородку (с волокнистым, гранулированным или пористым фильтрующим материалом), в процессе которой аэрозольные частицы задерживаются, а газовая составляющая полностью проходит через нее.

Процесс очистки от вредных примесей характеризуется тремя основными параметрами: общей эффективностью очистки, гидравлическим сопротивлением, производительностью. Общая эффективность очистки показывает степень снижения вредных примесей в применяемом средстве и характеризуется коэффициентом

где С вх и С вых - концентрации вредных примесей до и после средства очистки. Гидравлическое сопротивление определяется как разность давления на входе Р вх и выходе Р вых из системы очистки:

где ξ - коэффициент гидравлического сопротивления; р и V - плотность (кг/м 3) и скорость воздуха (м/с) в системе очистки соответственно.

Производительность систем очистки показывает, какое количество воздуха проходит через нее в единицу времени (м 3 /ч).

© 2024 hozferma.ru - Справочник садовода. Грядки, благоустройство, подсобное хозяйство